Certified Quantum Random Numbers from Untrusted Light
A remarkable aspect of quantum theory is that certain measurement outcomes are entirely unpredictable to all possible observers. Such quantum events can be harnessed to generate numbers whose randomness is asserted based upon the underlying physical processes. We formally introduce, design, and expe...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8a4bbafcaa29465c9813d6a8313e5fda |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8a4bbafcaa29465c9813d6a8313e5fda |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8a4bbafcaa29465c9813d6a8313e5fda2021-12-02T14:09:04ZCertified Quantum Random Numbers from Untrusted Light10.1103/PhysRevX.10.0410482160-3308https://doaj.org/article/8a4bbafcaa29465c9813d6a8313e5fda2020-12-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.10.041048http://doi.org/10.1103/PhysRevX.10.041048https://doaj.org/toc/2160-3308A remarkable aspect of quantum theory is that certain measurement outcomes are entirely unpredictable to all possible observers. Such quantum events can be harnessed to generate numbers whose randomness is asserted based upon the underlying physical processes. We formally introduce, design, and experimentally demonstrate an ultrafast optical quantum random number generator that uses a totally untrusted photonic source. While considering completely general quantum attacks, we certify and generate in real time random numbers at a rate of 8.05 Gb/s with a composable security parameter of 10^{-10}. Composable security is the most stringent and useful security paradigm because any given protocol remains secure even if arbitrarily combined with other instances of the same, or other, protocols, thereby allowing the generated randomness to be utilized for arbitrary applications in cryptography and beyond. This work achieves the fastest generation of composably secure quantum random numbers ever reported.David DrahiNathan WalkMatty J. HobanAleksey K. FedorovRoman ShakhovoyAkky FeimovYury KurochkinW. Steven KolthammerJoshua NunnJonathan BarrettIan A. WalmsleyAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 10, Iss 4, p 041048 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 |
spellingShingle |
Physics QC1-999 David Drahi Nathan Walk Matty J. Hoban Aleksey K. Fedorov Roman Shakhovoy Akky Feimov Yury Kurochkin W. Steven Kolthammer Joshua Nunn Jonathan Barrett Ian A. Walmsley Certified Quantum Random Numbers from Untrusted Light |
description |
A remarkable aspect of quantum theory is that certain measurement outcomes are entirely unpredictable to all possible observers. Such quantum events can be harnessed to generate numbers whose randomness is asserted based upon the underlying physical processes. We formally introduce, design, and experimentally demonstrate an ultrafast optical quantum random number generator that uses a totally untrusted photonic source. While considering completely general quantum attacks, we certify and generate in real time random numbers at a rate of 8.05 Gb/s with a composable security parameter of 10^{-10}. Composable security is the most stringent and useful security paradigm because any given protocol remains secure even if arbitrarily combined with other instances of the same, or other, protocols, thereby allowing the generated randomness to be utilized for arbitrary applications in cryptography and beyond. This work achieves the fastest generation of composably secure quantum random numbers ever reported. |
format |
article |
author |
David Drahi Nathan Walk Matty J. Hoban Aleksey K. Fedorov Roman Shakhovoy Akky Feimov Yury Kurochkin W. Steven Kolthammer Joshua Nunn Jonathan Barrett Ian A. Walmsley |
author_facet |
David Drahi Nathan Walk Matty J. Hoban Aleksey K. Fedorov Roman Shakhovoy Akky Feimov Yury Kurochkin W. Steven Kolthammer Joshua Nunn Jonathan Barrett Ian A. Walmsley |
author_sort |
David Drahi |
title |
Certified Quantum Random Numbers from Untrusted Light |
title_short |
Certified Quantum Random Numbers from Untrusted Light |
title_full |
Certified Quantum Random Numbers from Untrusted Light |
title_fullStr |
Certified Quantum Random Numbers from Untrusted Light |
title_full_unstemmed |
Certified Quantum Random Numbers from Untrusted Light |
title_sort |
certified quantum random numbers from untrusted light |
publisher |
American Physical Society |
publishDate |
2020 |
url |
https://doaj.org/article/8a4bbafcaa29465c9813d6a8313e5fda |
work_keys_str_mv |
AT daviddrahi certifiedquantumrandomnumbersfromuntrustedlight AT nathanwalk certifiedquantumrandomnumbersfromuntrustedlight AT mattyjhoban certifiedquantumrandomnumbersfromuntrustedlight AT alekseykfedorov certifiedquantumrandomnumbersfromuntrustedlight AT romanshakhovoy certifiedquantumrandomnumbersfromuntrustedlight AT akkyfeimov certifiedquantumrandomnumbersfromuntrustedlight AT yurykurochkin certifiedquantumrandomnumbersfromuntrustedlight AT wstevenkolthammer certifiedquantumrandomnumbersfromuntrustedlight AT joshuanunn certifiedquantumrandomnumbersfromuntrustedlight AT jonathanbarrett certifiedquantumrandomnumbersfromuntrustedlight AT ianawalmsley certifiedquantumrandomnumbersfromuntrustedlight |
_version_ |
1718391917770702848 |