Rigorous Statistical Methods for Rigorous Microbiome Science
ABSTRACT High-throughput sequencing has facilitated discovery in microbiome science, but distinguishing true discoveries from spurious signals can be challenging. The Statistical Diversity Lab develops rigorous statistical methods and statistical software for the analysis of microbiome and biodivers...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8a685d4d7a404b6d888906e960bb251d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8a685d4d7a404b6d888906e960bb251d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8a685d4d7a404b6d888906e960bb251d2021-12-02T19:46:18ZRigorous Statistical Methods for Rigorous Microbiome Science10.1128/mSystems.00117-192379-5077https://doaj.org/article/8a685d4d7a404b6d888906e960bb251d2019-06-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSystems.00117-19https://doaj.org/toc/2379-5077ABSTRACT High-throughput sequencing has facilitated discovery in microbiome science, but distinguishing true discoveries from spurious signals can be challenging. The Statistical Diversity Lab develops rigorous statistical methods and statistical software for the analysis of microbiome and biodiversity data. Developing statistical methods that produce valid P values requires thoughtful modeling and careful validation, but careful statistical analysis reduces the risk of false discoveries and increases scientific understanding.Amy D. WillisAmerican Society for Microbiologyarticlehypothesis testingmachine learningmodelingreproducibilitystatisticsMicrobiologyQR1-502ENmSystems, Vol 4, Iss 3 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
hypothesis testing machine learning modeling reproducibility statistics Microbiology QR1-502 |
spellingShingle |
hypothesis testing machine learning modeling reproducibility statistics Microbiology QR1-502 Amy D. Willis Rigorous Statistical Methods for Rigorous Microbiome Science |
description |
ABSTRACT High-throughput sequencing has facilitated discovery in microbiome science, but distinguishing true discoveries from spurious signals can be challenging. The Statistical Diversity Lab develops rigorous statistical methods and statistical software for the analysis of microbiome and biodiversity data. Developing statistical methods that produce valid P values requires thoughtful modeling and careful validation, but careful statistical analysis reduces the risk of false discoveries and increases scientific understanding. |
format |
article |
author |
Amy D. Willis |
author_facet |
Amy D. Willis |
author_sort |
Amy D. Willis |
title |
Rigorous Statistical Methods for Rigorous Microbiome Science |
title_short |
Rigorous Statistical Methods for Rigorous Microbiome Science |
title_full |
Rigorous Statistical Methods for Rigorous Microbiome Science |
title_fullStr |
Rigorous Statistical Methods for Rigorous Microbiome Science |
title_full_unstemmed |
Rigorous Statistical Methods for Rigorous Microbiome Science |
title_sort |
rigorous statistical methods for rigorous microbiome science |
publisher |
American Society for Microbiology |
publishDate |
2019 |
url |
https://doaj.org/article/8a685d4d7a404b6d888906e960bb251d |
work_keys_str_mv |
AT amydwillis rigorousstatisticalmethodsforrigorousmicrobiomescience |
_version_ |
1718376037387075584 |