Rigorous Statistical Methods for Rigorous Microbiome Science

ABSTRACT High-throughput sequencing has facilitated discovery in microbiome science, but distinguishing true discoveries from spurious signals can be challenging. The Statistical Diversity Lab develops rigorous statistical methods and statistical software for the analysis of microbiome and biodivers...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Amy D. Willis
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://doaj.org/article/8a685d4d7a404b6d888906e960bb251d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8a685d4d7a404b6d888906e960bb251d
record_format dspace
spelling oai:doaj.org-article:8a685d4d7a404b6d888906e960bb251d2021-12-02T19:46:18ZRigorous Statistical Methods for Rigorous Microbiome Science10.1128/mSystems.00117-192379-5077https://doaj.org/article/8a685d4d7a404b6d888906e960bb251d2019-06-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSystems.00117-19https://doaj.org/toc/2379-5077ABSTRACT High-throughput sequencing has facilitated discovery in microbiome science, but distinguishing true discoveries from spurious signals can be challenging. The Statistical Diversity Lab develops rigorous statistical methods and statistical software for the analysis of microbiome and biodiversity data. Developing statistical methods that produce valid P values requires thoughtful modeling and careful validation, but careful statistical analysis reduces the risk of false discoveries and increases scientific understanding.Amy D. WillisAmerican Society for Microbiologyarticlehypothesis testingmachine learningmodelingreproducibilitystatisticsMicrobiologyQR1-502ENmSystems, Vol 4, Iss 3 (2019)
institution DOAJ
collection DOAJ
language EN
topic hypothesis testing
machine learning
modeling
reproducibility
statistics
Microbiology
QR1-502
spellingShingle hypothesis testing
machine learning
modeling
reproducibility
statistics
Microbiology
QR1-502
Amy D. Willis
Rigorous Statistical Methods for Rigorous Microbiome Science
description ABSTRACT High-throughput sequencing has facilitated discovery in microbiome science, but distinguishing true discoveries from spurious signals can be challenging. The Statistical Diversity Lab develops rigorous statistical methods and statistical software for the analysis of microbiome and biodiversity data. Developing statistical methods that produce valid P values requires thoughtful modeling and careful validation, but careful statistical analysis reduces the risk of false discoveries and increases scientific understanding.
format article
author Amy D. Willis
author_facet Amy D. Willis
author_sort Amy D. Willis
title Rigorous Statistical Methods for Rigorous Microbiome Science
title_short Rigorous Statistical Methods for Rigorous Microbiome Science
title_full Rigorous Statistical Methods for Rigorous Microbiome Science
title_fullStr Rigorous Statistical Methods for Rigorous Microbiome Science
title_full_unstemmed Rigorous Statistical Methods for Rigorous Microbiome Science
title_sort rigorous statistical methods for rigorous microbiome science
publisher American Society for Microbiology
publishDate 2019
url https://doaj.org/article/8a685d4d7a404b6d888906e960bb251d
work_keys_str_mv AT amydwillis rigorousstatisticalmethodsforrigorousmicrobiomescience
_version_ 1718376037387075584