Revealing nonlinear neural decoding by analyzing choices

Sensory data about most natural task-relevant variables are entangled with task-irrelevant nuisance variables. Here, the authors present a theoretical framework for quantifying how the brain uses or decodes its nonlinear information which indicates near-optimal nonlinear decoding.

Guardado en:
Detalles Bibliográficos
Autores principales: Qianli Yang, Edgar Walker, R. James Cotton, Andreas S. Tolias, Xaq Pitkow
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/8a6c8800814c4391be68ee95e74e47af
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Sensory data about most natural task-relevant variables are entangled with task-irrelevant nuisance variables. Here, the authors present a theoretical framework for quantifying how the brain uses or decodes its nonlinear information which indicates near-optimal nonlinear decoding.