Revealing nonlinear neural decoding by analyzing choices

Sensory data about most natural task-relevant variables are entangled with task-irrelevant nuisance variables. Here, the authors present a theoretical framework for quantifying how the brain uses or decodes its nonlinear information which indicates near-optimal nonlinear decoding.

Guardado en:
Detalles Bibliográficos
Autores principales: Qianli Yang, Edgar Walker, R. James Cotton, Andreas S. Tolias, Xaq Pitkow
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/8a6c8800814c4391be68ee95e74e47af
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8a6c8800814c4391be68ee95e74e47af
record_format dspace
spelling oai:doaj.org-article:8a6c8800814c4391be68ee95e74e47af2021-11-21T12:35:46ZRevealing nonlinear neural decoding by analyzing choices10.1038/s41467-021-26793-92041-1723https://doaj.org/article/8a6c8800814c4391be68ee95e74e47af2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26793-9https://doaj.org/toc/2041-1723Sensory data about most natural task-relevant variables are entangled with task-irrelevant nuisance variables. Here, the authors present a theoretical framework for quantifying how the brain uses or decodes its nonlinear information which indicates near-optimal nonlinear decoding.Qianli YangEdgar WalkerR. James CottonAndreas S. ToliasXaq PitkowNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Qianli Yang
Edgar Walker
R. James Cotton
Andreas S. Tolias
Xaq Pitkow
Revealing nonlinear neural decoding by analyzing choices
description Sensory data about most natural task-relevant variables are entangled with task-irrelevant nuisance variables. Here, the authors present a theoretical framework for quantifying how the brain uses or decodes its nonlinear information which indicates near-optimal nonlinear decoding.
format article
author Qianli Yang
Edgar Walker
R. James Cotton
Andreas S. Tolias
Xaq Pitkow
author_facet Qianli Yang
Edgar Walker
R. James Cotton
Andreas S. Tolias
Xaq Pitkow
author_sort Qianli Yang
title Revealing nonlinear neural decoding by analyzing choices
title_short Revealing nonlinear neural decoding by analyzing choices
title_full Revealing nonlinear neural decoding by analyzing choices
title_fullStr Revealing nonlinear neural decoding by analyzing choices
title_full_unstemmed Revealing nonlinear neural decoding by analyzing choices
title_sort revealing nonlinear neural decoding by analyzing choices
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/8a6c8800814c4391be68ee95e74e47af
work_keys_str_mv AT qianliyang revealingnonlinearneuraldecodingbyanalyzingchoices
AT edgarwalker revealingnonlinearneuraldecodingbyanalyzingchoices
AT rjamescotton revealingnonlinearneuraldecodingbyanalyzingchoices
AT andreasstolias revealingnonlinearneuraldecodingbyanalyzingchoices
AT xaqpitkow revealingnonlinearneuraldecodingbyanalyzingchoices
_version_ 1718418896511303680