The ANTsX ecosystem for quantitative biological and medical imaging

Abstract The Advanced Normalizations Tools ecosystem, known as ANTsX, consists of multiple open-source software libraries which house top-performing algorithms used worldwide by scientific and research communities for processing and analyzing biological and medical imaging data. The base software li...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nicholas J. Tustison, Philip A. Cook, Andrew J. Holbrook, Hans J. Johnson, John Muschelli, Gabriel A. Devenyi, Jeffrey T. Duda, Sandhitsu R. Das, Nicholas C. Cullen, Daniel L. Gillen, Michael A. Yassa, James R. Stone, James C. Gee, Brian B. Avants
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8a730c2b91564fcbbff35342a39fe8ae
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8a730c2b91564fcbbff35342a39fe8ae
record_format dspace
spelling oai:doaj.org-article:8a730c2b91564fcbbff35342a39fe8ae2021-12-02T17:15:33ZThe ANTsX ecosystem for quantitative biological and medical imaging10.1038/s41598-021-87564-62045-2322https://doaj.org/article/8a730c2b91564fcbbff35342a39fe8ae2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-87564-6https://doaj.org/toc/2045-2322Abstract The Advanced Normalizations Tools ecosystem, known as ANTsX, consists of multiple open-source software libraries which house top-performing algorithms used worldwide by scientific and research communities for processing and analyzing biological and medical imaging data. The base software library, ANTs, is built upon, and contributes to, the NIH-sponsored Insight Toolkit. Founded in 2008 with the highly regarded Symmetric Normalization image registration framework, the ANTs library has since grown to include additional functionality. Recent enhancements include statistical, visualization, and deep learning capabilities through interfacing with both the R statistical project (ANTsR) and Python (ANTsPy). Additionally, the corresponding deep learning extensions ANTsRNet and ANTsPyNet (built on the popular TensorFlow/Keras libraries) contain several popular network architectures and trained models for specific applications. One such comprehensive application is a deep learning analog for generating cortical thickness data from structural T1-weighted brain MRI, both cross-sectionally and longitudinally. These pipelines significantly improve computational efficiency and provide comparable-to-superior accuracy over multiple criteria relative to the existing ANTs workflows and simultaneously illustrate the importance of the comprehensive ANTsX approach as a framework for medical image analysis.Nicholas J. TustisonPhilip A. CookAndrew J. HolbrookHans J. JohnsonJohn MuschelliGabriel A. DevenyiJeffrey T. DudaSandhitsu R. DasNicholas C. CullenDaniel L. GillenMichael A. YassaJames R. StoneJames C. GeeBrian B. AvantsNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Nicholas J. Tustison
Philip A. Cook
Andrew J. Holbrook
Hans J. Johnson
John Muschelli
Gabriel A. Devenyi
Jeffrey T. Duda
Sandhitsu R. Das
Nicholas C. Cullen
Daniel L. Gillen
Michael A. Yassa
James R. Stone
James C. Gee
Brian B. Avants
The ANTsX ecosystem for quantitative biological and medical imaging
description Abstract The Advanced Normalizations Tools ecosystem, known as ANTsX, consists of multiple open-source software libraries which house top-performing algorithms used worldwide by scientific and research communities for processing and analyzing biological and medical imaging data. The base software library, ANTs, is built upon, and contributes to, the NIH-sponsored Insight Toolkit. Founded in 2008 with the highly regarded Symmetric Normalization image registration framework, the ANTs library has since grown to include additional functionality. Recent enhancements include statistical, visualization, and deep learning capabilities through interfacing with both the R statistical project (ANTsR) and Python (ANTsPy). Additionally, the corresponding deep learning extensions ANTsRNet and ANTsPyNet (built on the popular TensorFlow/Keras libraries) contain several popular network architectures and trained models for specific applications. One such comprehensive application is a deep learning analog for generating cortical thickness data from structural T1-weighted brain MRI, both cross-sectionally and longitudinally. These pipelines significantly improve computational efficiency and provide comparable-to-superior accuracy over multiple criteria relative to the existing ANTs workflows and simultaneously illustrate the importance of the comprehensive ANTsX approach as a framework for medical image analysis.
format article
author Nicholas J. Tustison
Philip A. Cook
Andrew J. Holbrook
Hans J. Johnson
John Muschelli
Gabriel A. Devenyi
Jeffrey T. Duda
Sandhitsu R. Das
Nicholas C. Cullen
Daniel L. Gillen
Michael A. Yassa
James R. Stone
James C. Gee
Brian B. Avants
author_facet Nicholas J. Tustison
Philip A. Cook
Andrew J. Holbrook
Hans J. Johnson
John Muschelli
Gabriel A. Devenyi
Jeffrey T. Duda
Sandhitsu R. Das
Nicholas C. Cullen
Daniel L. Gillen
Michael A. Yassa
James R. Stone
James C. Gee
Brian B. Avants
author_sort Nicholas J. Tustison
title The ANTsX ecosystem for quantitative biological and medical imaging
title_short The ANTsX ecosystem for quantitative biological and medical imaging
title_full The ANTsX ecosystem for quantitative biological and medical imaging
title_fullStr The ANTsX ecosystem for quantitative biological and medical imaging
title_full_unstemmed The ANTsX ecosystem for quantitative biological and medical imaging
title_sort antsx ecosystem for quantitative biological and medical imaging
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/8a730c2b91564fcbbff35342a39fe8ae
work_keys_str_mv AT nicholasjtustison theantsxecosystemforquantitativebiologicalandmedicalimaging
AT philipacook theantsxecosystemforquantitativebiologicalandmedicalimaging
AT andrewjholbrook theantsxecosystemforquantitativebiologicalandmedicalimaging
AT hansjjohnson theantsxecosystemforquantitativebiologicalandmedicalimaging
AT johnmuschelli theantsxecosystemforquantitativebiologicalandmedicalimaging
AT gabrieladevenyi theantsxecosystemforquantitativebiologicalandmedicalimaging
AT jeffreytduda theantsxecosystemforquantitativebiologicalandmedicalimaging
AT sandhitsurdas theantsxecosystemforquantitativebiologicalandmedicalimaging
AT nicholasccullen theantsxecosystemforquantitativebiologicalandmedicalimaging
AT daniellgillen theantsxecosystemforquantitativebiologicalandmedicalimaging
AT michaelayassa theantsxecosystemforquantitativebiologicalandmedicalimaging
AT jamesrstone theantsxecosystemforquantitativebiologicalandmedicalimaging
AT jamescgee theantsxecosystemforquantitativebiologicalandmedicalimaging
AT brianbavants theantsxecosystemforquantitativebiologicalandmedicalimaging
AT nicholasjtustison antsxecosystemforquantitativebiologicalandmedicalimaging
AT philipacook antsxecosystemforquantitativebiologicalandmedicalimaging
AT andrewjholbrook antsxecosystemforquantitativebiologicalandmedicalimaging
AT hansjjohnson antsxecosystemforquantitativebiologicalandmedicalimaging
AT johnmuschelli antsxecosystemforquantitativebiologicalandmedicalimaging
AT gabrieladevenyi antsxecosystemforquantitativebiologicalandmedicalimaging
AT jeffreytduda antsxecosystemforquantitativebiologicalandmedicalimaging
AT sandhitsurdas antsxecosystemforquantitativebiologicalandmedicalimaging
AT nicholasccullen antsxecosystemforquantitativebiologicalandmedicalimaging
AT daniellgillen antsxecosystemforquantitativebiologicalandmedicalimaging
AT michaelayassa antsxecosystemforquantitativebiologicalandmedicalimaging
AT jamesrstone antsxecosystemforquantitativebiologicalandmedicalimaging
AT jamescgee antsxecosystemforquantitativebiologicalandmedicalimaging
AT brianbavants antsxecosystemforquantitativebiologicalandmedicalimaging
_version_ 1718381270844571648