The ANTsX ecosystem for quantitative biological and medical imaging
Abstract The Advanced Normalizations Tools ecosystem, known as ANTsX, consists of multiple open-source software libraries which house top-performing algorithms used worldwide by scientific and research communities for processing and analyzing biological and medical imaging data. The base software li...
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8a730c2b91564fcbbff35342a39fe8ae |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8a730c2b91564fcbbff35342a39fe8ae |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8a730c2b91564fcbbff35342a39fe8ae2021-12-02T17:15:33ZThe ANTsX ecosystem for quantitative biological and medical imaging10.1038/s41598-021-87564-62045-2322https://doaj.org/article/8a730c2b91564fcbbff35342a39fe8ae2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-87564-6https://doaj.org/toc/2045-2322Abstract The Advanced Normalizations Tools ecosystem, known as ANTsX, consists of multiple open-source software libraries which house top-performing algorithms used worldwide by scientific and research communities for processing and analyzing biological and medical imaging data. The base software library, ANTs, is built upon, and contributes to, the NIH-sponsored Insight Toolkit. Founded in 2008 with the highly regarded Symmetric Normalization image registration framework, the ANTs library has since grown to include additional functionality. Recent enhancements include statistical, visualization, and deep learning capabilities through interfacing with both the R statistical project (ANTsR) and Python (ANTsPy). Additionally, the corresponding deep learning extensions ANTsRNet and ANTsPyNet (built on the popular TensorFlow/Keras libraries) contain several popular network architectures and trained models for specific applications. One such comprehensive application is a deep learning analog for generating cortical thickness data from structural T1-weighted brain MRI, both cross-sectionally and longitudinally. These pipelines significantly improve computational efficiency and provide comparable-to-superior accuracy over multiple criteria relative to the existing ANTs workflows and simultaneously illustrate the importance of the comprehensive ANTsX approach as a framework for medical image analysis.Nicholas J. TustisonPhilip A. CookAndrew J. HolbrookHans J. JohnsonJohn MuschelliGabriel A. DevenyiJeffrey T. DudaSandhitsu R. DasNicholas C. CullenDaniel L. GillenMichael A. YassaJames R. StoneJames C. GeeBrian B. AvantsNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Nicholas J. Tustison Philip A. Cook Andrew J. Holbrook Hans J. Johnson John Muschelli Gabriel A. Devenyi Jeffrey T. Duda Sandhitsu R. Das Nicholas C. Cullen Daniel L. Gillen Michael A. Yassa James R. Stone James C. Gee Brian B. Avants The ANTsX ecosystem for quantitative biological and medical imaging |
description |
Abstract The Advanced Normalizations Tools ecosystem, known as ANTsX, consists of multiple open-source software libraries which house top-performing algorithms used worldwide by scientific and research communities for processing and analyzing biological and medical imaging data. The base software library, ANTs, is built upon, and contributes to, the NIH-sponsored Insight Toolkit. Founded in 2008 with the highly regarded Symmetric Normalization image registration framework, the ANTs library has since grown to include additional functionality. Recent enhancements include statistical, visualization, and deep learning capabilities through interfacing with both the R statistical project (ANTsR) and Python (ANTsPy). Additionally, the corresponding deep learning extensions ANTsRNet and ANTsPyNet (built on the popular TensorFlow/Keras libraries) contain several popular network architectures and trained models for specific applications. One such comprehensive application is a deep learning analog for generating cortical thickness data from structural T1-weighted brain MRI, both cross-sectionally and longitudinally. These pipelines significantly improve computational efficiency and provide comparable-to-superior accuracy over multiple criteria relative to the existing ANTs workflows and simultaneously illustrate the importance of the comprehensive ANTsX approach as a framework for medical image analysis. |
format |
article |
author |
Nicholas J. Tustison Philip A. Cook Andrew J. Holbrook Hans J. Johnson John Muschelli Gabriel A. Devenyi Jeffrey T. Duda Sandhitsu R. Das Nicholas C. Cullen Daniel L. Gillen Michael A. Yassa James R. Stone James C. Gee Brian B. Avants |
author_facet |
Nicholas J. Tustison Philip A. Cook Andrew J. Holbrook Hans J. Johnson John Muschelli Gabriel A. Devenyi Jeffrey T. Duda Sandhitsu R. Das Nicholas C. Cullen Daniel L. Gillen Michael A. Yassa James R. Stone James C. Gee Brian B. Avants |
author_sort |
Nicholas J. Tustison |
title |
The ANTsX ecosystem for quantitative biological and medical imaging |
title_short |
The ANTsX ecosystem for quantitative biological and medical imaging |
title_full |
The ANTsX ecosystem for quantitative biological and medical imaging |
title_fullStr |
The ANTsX ecosystem for quantitative biological and medical imaging |
title_full_unstemmed |
The ANTsX ecosystem for quantitative biological and medical imaging |
title_sort |
antsx ecosystem for quantitative biological and medical imaging |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/8a730c2b91564fcbbff35342a39fe8ae |
work_keys_str_mv |
AT nicholasjtustison theantsxecosystemforquantitativebiologicalandmedicalimaging AT philipacook theantsxecosystemforquantitativebiologicalandmedicalimaging AT andrewjholbrook theantsxecosystemforquantitativebiologicalandmedicalimaging AT hansjjohnson theantsxecosystemforquantitativebiologicalandmedicalimaging AT johnmuschelli theantsxecosystemforquantitativebiologicalandmedicalimaging AT gabrieladevenyi theantsxecosystemforquantitativebiologicalandmedicalimaging AT jeffreytduda theantsxecosystemforquantitativebiologicalandmedicalimaging AT sandhitsurdas theantsxecosystemforquantitativebiologicalandmedicalimaging AT nicholasccullen theantsxecosystemforquantitativebiologicalandmedicalimaging AT daniellgillen theantsxecosystemforquantitativebiologicalandmedicalimaging AT michaelayassa theantsxecosystemforquantitativebiologicalandmedicalimaging AT jamesrstone theantsxecosystemforquantitativebiologicalandmedicalimaging AT jamescgee theantsxecosystemforquantitativebiologicalandmedicalimaging AT brianbavants theantsxecosystemforquantitativebiologicalandmedicalimaging AT nicholasjtustison antsxecosystemforquantitativebiologicalandmedicalimaging AT philipacook antsxecosystemforquantitativebiologicalandmedicalimaging AT andrewjholbrook antsxecosystemforquantitativebiologicalandmedicalimaging AT hansjjohnson antsxecosystemforquantitativebiologicalandmedicalimaging AT johnmuschelli antsxecosystemforquantitativebiologicalandmedicalimaging AT gabrieladevenyi antsxecosystemforquantitativebiologicalandmedicalimaging AT jeffreytduda antsxecosystemforquantitativebiologicalandmedicalimaging AT sandhitsurdas antsxecosystemforquantitativebiologicalandmedicalimaging AT nicholasccullen antsxecosystemforquantitativebiologicalandmedicalimaging AT daniellgillen antsxecosystemforquantitativebiologicalandmedicalimaging AT michaelayassa antsxecosystemforquantitativebiologicalandmedicalimaging AT jamesrstone antsxecosystemforquantitativebiologicalandmedicalimaging AT jamescgee antsxecosystemforquantitativebiologicalandmedicalimaging AT brianbavants antsxecosystemforquantitativebiologicalandmedicalimaging |
_version_ |
1718381270844571648 |