In vitro biomimetic platforms featuring a perfusion system and 3D spheroid culture promote the construction of tissue-engineered corneal endothelial layers

Abstract Corneal endothelial cells (CECs) are very important for the maintenance of corneal transparency. However, in vitro, CECs display limited proliferation and loss of phenotype via endothelial to mesenchymal transformation (EMT) and cellular senescence. In this study, we demonstrate that contin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shanyi Li, Yuting Han, Hao Lei, Yingxin Zeng, Zekai Cui, Qiaolang Zeng, Deliang Zhu, Ruiling Lian, Jun Zhang, Zhe Chen, Jiansu Chen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8a8251148c264a3aaf2769a2d8f6941c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8a8251148c264a3aaf2769a2d8f6941c
record_format dspace
spelling oai:doaj.org-article:8a8251148c264a3aaf2769a2d8f6941c2021-12-02T11:52:42ZIn vitro biomimetic platforms featuring a perfusion system and 3D spheroid culture promote the construction of tissue-engineered corneal endothelial layers10.1038/s41598-017-00914-12045-2322https://doaj.org/article/8a8251148c264a3aaf2769a2d8f6941c2017-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-00914-1https://doaj.org/toc/2045-2322Abstract Corneal endothelial cells (CECs) are very important for the maintenance of corneal transparency. However, in vitro, CECs display limited proliferation and loss of phenotype via endothelial to mesenchymal transformation (EMT) and cellular senescence. In this study, we demonstrate that continuous supplementary nutrition using a perfusion culture bioreactor and three-dimensional (3D) spheroid culture can be used to improve CEC expansion in culture and to construct a tissue-engineered CEC layer. Compared with static culture, perfusion-derived CECs exhibited an increased proliferative ability as well as formed close cell-cell contact junctions and numerous surface microvilli. We also demonstrated that the CEC spheroid culture significantly down-regulated gene expression of the proliferation marker Ki67 and EMT-related markers Vimentin and α-SMA, whereas the gene expression level of the CEC marker ATP1A1 was significantly up-regulated. Furthermore, use of the perfusion system in conjunction with a spheroid culture on decellularized corneal scaffolds and collagen sheets promoted the generation of CEC monolayers as well as neo-synthesized ECM formation. This study also confirmed that a CEC spheroid culture on a curved collagen sheet with controlled physiological intraocular pressure could generate a CEC monolayer. Thus, our results show that the use of a perfusion system and 3D spheroid culture can promote CEC expansion and the construction of tissue-engineered corneal endothelial layers in vitro.Shanyi LiYuting HanHao LeiYingxin ZengZekai CuiQiaolang ZengDeliang ZhuRuiling LianJun ZhangZhe ChenJiansu ChenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-17 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Shanyi Li
Yuting Han
Hao Lei
Yingxin Zeng
Zekai Cui
Qiaolang Zeng
Deliang Zhu
Ruiling Lian
Jun Zhang
Zhe Chen
Jiansu Chen
In vitro biomimetic platforms featuring a perfusion system and 3D spheroid culture promote the construction of tissue-engineered corneal endothelial layers
description Abstract Corneal endothelial cells (CECs) are very important for the maintenance of corneal transparency. However, in vitro, CECs display limited proliferation and loss of phenotype via endothelial to mesenchymal transformation (EMT) and cellular senescence. In this study, we demonstrate that continuous supplementary nutrition using a perfusion culture bioreactor and three-dimensional (3D) spheroid culture can be used to improve CEC expansion in culture and to construct a tissue-engineered CEC layer. Compared with static culture, perfusion-derived CECs exhibited an increased proliferative ability as well as formed close cell-cell contact junctions and numerous surface microvilli. We also demonstrated that the CEC spheroid culture significantly down-regulated gene expression of the proliferation marker Ki67 and EMT-related markers Vimentin and α-SMA, whereas the gene expression level of the CEC marker ATP1A1 was significantly up-regulated. Furthermore, use of the perfusion system in conjunction with a spheroid culture on decellularized corneal scaffolds and collagen sheets promoted the generation of CEC monolayers as well as neo-synthesized ECM formation. This study also confirmed that a CEC spheroid culture on a curved collagen sheet with controlled physiological intraocular pressure could generate a CEC monolayer. Thus, our results show that the use of a perfusion system and 3D spheroid culture can promote CEC expansion and the construction of tissue-engineered corneal endothelial layers in vitro.
format article
author Shanyi Li
Yuting Han
Hao Lei
Yingxin Zeng
Zekai Cui
Qiaolang Zeng
Deliang Zhu
Ruiling Lian
Jun Zhang
Zhe Chen
Jiansu Chen
author_facet Shanyi Li
Yuting Han
Hao Lei
Yingxin Zeng
Zekai Cui
Qiaolang Zeng
Deliang Zhu
Ruiling Lian
Jun Zhang
Zhe Chen
Jiansu Chen
author_sort Shanyi Li
title In vitro biomimetic platforms featuring a perfusion system and 3D spheroid culture promote the construction of tissue-engineered corneal endothelial layers
title_short In vitro biomimetic platforms featuring a perfusion system and 3D spheroid culture promote the construction of tissue-engineered corneal endothelial layers
title_full In vitro biomimetic platforms featuring a perfusion system and 3D spheroid culture promote the construction of tissue-engineered corneal endothelial layers
title_fullStr In vitro biomimetic platforms featuring a perfusion system and 3D spheroid culture promote the construction of tissue-engineered corneal endothelial layers
title_full_unstemmed In vitro biomimetic platforms featuring a perfusion system and 3D spheroid culture promote the construction of tissue-engineered corneal endothelial layers
title_sort in vitro biomimetic platforms featuring a perfusion system and 3d spheroid culture promote the construction of tissue-engineered corneal endothelial layers
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/8a8251148c264a3aaf2769a2d8f6941c
work_keys_str_mv AT shanyili invitrobiomimeticplatformsfeaturingaperfusionsystemand3dspheroidculturepromotetheconstructionoftissueengineeredcornealendotheliallayers
AT yutinghan invitrobiomimeticplatformsfeaturingaperfusionsystemand3dspheroidculturepromotetheconstructionoftissueengineeredcornealendotheliallayers
AT haolei invitrobiomimeticplatformsfeaturingaperfusionsystemand3dspheroidculturepromotetheconstructionoftissueengineeredcornealendotheliallayers
AT yingxinzeng invitrobiomimeticplatformsfeaturingaperfusionsystemand3dspheroidculturepromotetheconstructionoftissueengineeredcornealendotheliallayers
AT zekaicui invitrobiomimeticplatformsfeaturingaperfusionsystemand3dspheroidculturepromotetheconstructionoftissueengineeredcornealendotheliallayers
AT qiaolangzeng invitrobiomimeticplatformsfeaturingaperfusionsystemand3dspheroidculturepromotetheconstructionoftissueengineeredcornealendotheliallayers
AT deliangzhu invitrobiomimeticplatformsfeaturingaperfusionsystemand3dspheroidculturepromotetheconstructionoftissueengineeredcornealendotheliallayers
AT ruilinglian invitrobiomimeticplatformsfeaturingaperfusionsystemand3dspheroidculturepromotetheconstructionoftissueengineeredcornealendotheliallayers
AT junzhang invitrobiomimeticplatformsfeaturingaperfusionsystemand3dspheroidculturepromotetheconstructionoftissueengineeredcornealendotheliallayers
AT zhechen invitrobiomimeticplatformsfeaturingaperfusionsystemand3dspheroidculturepromotetheconstructionoftissueengineeredcornealendotheliallayers
AT jiansuchen invitrobiomimeticplatformsfeaturingaperfusionsystemand3dspheroidculturepromotetheconstructionoftissueengineeredcornealendotheliallayers
_version_ 1718394937614008320