Crystalline symmetry-protected non-trivial topology in prototype compound BaAl4
Abstract The BaAl4 prototype crystal structure is the most populous of all structure types, and is the building block for a diverse set of sub-structures including the famous ThCr2Si2 family that hosts high-temperature superconductivity and numerous magnetic and strongly correlated electron systems....
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8a8f6a07bc2044c1b2bd52485b91a1c1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract The BaAl4 prototype crystal structure is the most populous of all structure types, and is the building block for a diverse set of sub-structures including the famous ThCr2Si2 family that hosts high-temperature superconductivity and numerous magnetic and strongly correlated electron systems. The MA4 family of materials (M = Sr, Ba, Eu; A = Al, Ga, In) themselves present an intriguing set of ground states including charge and spin orders, but have largely been considered as uninteresting metals. We predict the exemplary compound BaAl4 to harbor a three-dimensional Dirac spectrum with non-trivial topology and possible nodal lines crossing the Brillouin zone, wherein one pair of semi-Dirac points with linear dispersion along the k z direction and quadratic dispersion along the k x /k y direction resides on the rotational axis with C 4v point group symmetry. An extremely large, unsaturating positive magnetoresistance in BaAl4 despite an uncompensated band structure is revealed, and quantum oscillations and angle-resolved photoemission spectroscopy measurements confirm the predicted multiband semimetal structure with pockets of Dirac holes and a Van Hove singularity (VHS) remarkably consistent with the theoretical prediction. We thus present BaAl4 as a topological semimetal, casting its prototype status into a role as a building block for a vast array of topological materials. |
---|