Auto-NAHL: A Neural Network Approach for Condition-Based Maintenance of Complex Industrial Systems
Nowadays, machine learning has emerged as a promising alternative for condition monitoring of industrial processes, making it indispensable for maintenance planning. Such a learning model is able to assess health states in real time provided that both training and testing samples are complete and ha...
Guardado en:
Autores principales: | Tarek Berghout, Mohamed Benbouzid, S. M. Muyeen, Toufik Bentrcia, Leila-Hayet Mouss |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8a95c28b3d8741c397aacfeff34073e6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review
por: Ana Rita Nunes, et al.
Publicado: (2021) -
A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Compressed Sensing and Stacked Multi-Granularity Convolution Denoising Auto-Encoder
por: Chuang Liang, et al.
Publicado: (2021) -
Methods of Condition Monitoring and Fault Detection for Electrical Machines
por: Karolina Kudelina, et al.
Publicado: (2021) -
An Enhanced Ensemble Learning-Based Fault Detection and Diagnosis for Grid-Connected PV Systems
por: Khaled Dhibi, et al.
Publicado: (2021) -
APPLICATIONS OF WAVELETS IN INDUCTION MACHINE FAULT DETECTION
por: Schmitt,Erick, et al.
Publicado: (2010)