Si-C is a method for inferring super-resolution intact genome structure from single-cell Hi-C data
Constructing valid super-resolution intact genome 3D structures from single-cell Hi-C data is essential in investigating chromosome folding. Here the authors develop a method that makes it possible to visualize and investigate chromosome folding in individual cells at the genome scale
Guardado en:
Autores principales: | Luming Meng, Chenxi Wang, Yi Shi, Qiong Luo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8a9a44e392314eac9ec8050d870610fc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
HiCancer: accurate and complete cancer genome phasing with Hi-C reads
por: Weihua Pan, et al.
Publicado: (2021) -
Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus
por: Yan Zhang, et al.
Publicado: (2018) -
In silico prediction of high-resolution Hi-C interaction matrices
por: Shilu Zhang, et al.
Publicado: (2019) -
SRpHi ratiometric pH biosensors for super-resolution microscopy
por: Douglas S. Richardson, et al.
Publicado: (2017) -
VEHiCLE: a Variationally Encoded Hi-C Loss Enhancement algorithm for improving and generating Hi-C data
por: Max Highsmith, et al.
Publicado: (2021)