PREVISÃO DE DEMANDA DE REFEIÇÕES EM RESTAURANTE UNIVERSITÁRIO COM OFERTA INSUFICIENTE

This paper aims to examine the meal demand forecasting in a University Dining Service (UDS) with short supply. The research derived from low productive capacity problems faced in some campus of the São Paulo State University (UNESP), which do not meet all demand. To estimate the pr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Adriana Barbosa Santos, Melissa Galdino Martos, Julia Muchatte Trento, Natália Soares Janzantti
Formato: article
Lenguaje:ES
PT
Publicado: Universidade Federal de Santa Catarina 2017
Materias:
Acceso en línea:https://doaj.org/article/8ab3f67fd6b74aa79342d2879c6339ed
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8ab3f67fd6b74aa79342d2879c6339ed
record_format dspace
spelling oai:doaj.org-article:8ab3f67fd6b74aa79342d2879c6339ed2021-11-11T15:49:48ZPREVISÃO DE DEMANDA DE REFEIÇÕES EM RESTAURANTE UNIVERSITÁRIO COM OFERTA INSUFICIENTE1983-4535https://doaj.org/article/8ab3f67fd6b74aa79342d2879c6339ed2017-01-01T00:00:00Zhttp://www.redalyc.org/articulo.oa?id=319351653011https://doaj.org/toc/1983-4535This paper aims to examine the meal demand forecasting in a University Dining Service (UDS) with short supply. The research derived from low productive capacity problems faced in some campus of the São Paulo State University (UNESP), which do not meet all demand. To estimate the proportion of people truly interested in the dining services and to calculate the surplus of non - service, it was suggested a design covering a combination of statistical techniques suc h as multiple regression analysis, diagnostic tests measurements, ROC curve, supported by a market research with quantitative approach. With the utilization of these techniques combination, it was analyzed information based on socioeconomic profiles, menu requirements, reason for eating in the UDS, and the food habits of 544 academic people. After analysis, it was estimated a surplus of 311 daily non - services (78% over than offer). Most UDS users are undergraduate students in vulnerable financial condition s for food and residence; which use the UDS because of price; living near the campus; and are moderately demanding about the menu. The conclusions reinforce the relevance of contextual information about the service user in the demand forecasting model aimi ng to increase the estimate accuracy of quantity of non - service.Adriana Barbosa SantosMelissa Galdino MartosJulia Muchatte TrentoNatália Soares JanzanttiUniversidade Federal de Santa Catarinaarticlefood servicesuniversity managementmarketing researchmultiple regressionquality managementEducation (General)L7-991Special aspects of educationLC8-6691ESPTRevista Gestão Universitária na América Latina , Vol 10, Iss 2, Pp 210-228 (2017)
institution DOAJ
collection DOAJ
language ES
PT
topic food services
university management
marketing research
multiple regression
quality management
Education (General)
L7-991
Special aspects of education
LC8-6691
spellingShingle food services
university management
marketing research
multiple regression
quality management
Education (General)
L7-991
Special aspects of education
LC8-6691
Adriana Barbosa Santos
Melissa Galdino Martos
Julia Muchatte Trento
Natália Soares Janzantti
PREVISÃO DE DEMANDA DE REFEIÇÕES EM RESTAURANTE UNIVERSITÁRIO COM OFERTA INSUFICIENTE
description This paper aims to examine the meal demand forecasting in a University Dining Service (UDS) with short supply. The research derived from low productive capacity problems faced in some campus of the São Paulo State University (UNESP), which do not meet all demand. To estimate the proportion of people truly interested in the dining services and to calculate the surplus of non - service, it was suggested a design covering a combination of statistical techniques suc h as multiple regression analysis, diagnostic tests measurements, ROC curve, supported by a market research with quantitative approach. With the utilization of these techniques combination, it was analyzed information based on socioeconomic profiles, menu requirements, reason for eating in the UDS, and the food habits of 544 academic people. After analysis, it was estimated a surplus of 311 daily non - services (78% over than offer). Most UDS users are undergraduate students in vulnerable financial condition s for food and residence; which use the UDS because of price; living near the campus; and are moderately demanding about the menu. The conclusions reinforce the relevance of contextual information about the service user in the demand forecasting model aimi ng to increase the estimate accuracy of quantity of non - service.
format article
author Adriana Barbosa Santos
Melissa Galdino Martos
Julia Muchatte Trento
Natália Soares Janzantti
author_facet Adriana Barbosa Santos
Melissa Galdino Martos
Julia Muchatte Trento
Natália Soares Janzantti
author_sort Adriana Barbosa Santos
title PREVISÃO DE DEMANDA DE REFEIÇÕES EM RESTAURANTE UNIVERSITÁRIO COM OFERTA INSUFICIENTE
title_short PREVISÃO DE DEMANDA DE REFEIÇÕES EM RESTAURANTE UNIVERSITÁRIO COM OFERTA INSUFICIENTE
title_full PREVISÃO DE DEMANDA DE REFEIÇÕES EM RESTAURANTE UNIVERSITÁRIO COM OFERTA INSUFICIENTE
title_fullStr PREVISÃO DE DEMANDA DE REFEIÇÕES EM RESTAURANTE UNIVERSITÁRIO COM OFERTA INSUFICIENTE
title_full_unstemmed PREVISÃO DE DEMANDA DE REFEIÇÕES EM RESTAURANTE UNIVERSITÁRIO COM OFERTA INSUFICIENTE
title_sort previsão de demanda de refeições em restaurante universitário com oferta insuficiente
publisher Universidade Federal de Santa Catarina
publishDate 2017
url https://doaj.org/article/8ab3f67fd6b74aa79342d2879c6339ed
work_keys_str_mv AT adrianabarbosasantos previsaodedemandaderefeicoesemrestauranteuniversitariocomofertainsuficiente
AT melissagaldinomartos previsaodedemandaderefeicoesemrestauranteuniversitariocomofertainsuficiente
AT juliamuchattetrento previsaodedemandaderefeicoesemrestauranteuniversitariocomofertainsuficiente
AT nataliasoaresjanzantti previsaodedemandaderefeicoesemrestauranteuniversitariocomofertainsuficiente
_version_ 1718433587521388544