Vulnerability assessment of agricultural production systems to drought stresses using robustness measures

Abstract Intensification of droughts in agricultural areas threaten global food security. The impacts of drought stresses vary widely across a region, not only due to climate variability but also due to heterogeneous soil and groundwater buffering capacities which protect against droughts. An innova...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Marangely Gonzalez Cruz, E. Annette Hernandez, Venkatesh Uddameri
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8aba05226b744007a920a6cd0cba841e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Intensification of droughts in agricultural areas threaten global food security. The impacts of drought stresses vary widely across a region, not only due to climate variability but also due to heterogeneous soil and groundwater buffering capacities which protect against droughts. An innovative drought vulnerability index was developed by reconciling the negative effects of drought stresses against the robustness offered by hydrologic buffers. Indicators for climate stresses, soil and groundwater buffering capacities were defined using physical principles and integrated using a multi-criteria decision making (MCDM) framework. The framework was applied to delineate drought vulnerability of agricultural production systems and evaluate current cropping choices across the High Plains region of the US that is underlain by the Ogallala Aquifer. Current crop growth choices appeared to be compatible with the intrinsic drought vulnerabilities with cotton and sorghum grown in higher vulnerability areas and corn and soybean produced in areas with lower vulnerability. Nearly 50% of the aquifer region fell in the transition zone exhibiting medium to high vulnerabilities warranting the need for better water management to adapt to a changing climate.