Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability
Abstract With multidrug-resistant bacterial pathogens on the rise, there is a strong research focus on alternative antibacterial treatments that could replace or complement classical antibiotics. Metallic nanoparticles, and in particular silver nanoparticles (AgNPs), have been shown to kill bacteria...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8ac7add6f5ec4087b76e6a25dcfd299c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8ac7add6f5ec4087b76e6a25dcfd299c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8ac7add6f5ec4087b76e6a25dcfd299c2021-12-02T16:04:27ZSilver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability10.1038/s41598-021-92006-42045-2322https://doaj.org/article/8ac7add6f5ec4087b76e6a25dcfd299c2021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-92006-4https://doaj.org/toc/2045-2322Abstract With multidrug-resistant bacterial pathogens on the rise, there is a strong research focus on alternative antibacterial treatments that could replace or complement classical antibiotics. Metallic nanoparticles, and in particular silver nanoparticles (AgNPs), have been shown to kill bacterial biofilms effectively, but their chemical synthesis often involves environmentally unfriendly by-products. Recent studies have shown that microbial and plant extracts can be used for the environmentally friendly synthesis of AgNPs. Herein we report a procedure for producing AgNPs using a putative Cedecea sp. strain isolated from soil. The isolated bacterial strain showed a remarkable potential for producing spherical, crystalline and stable AgNPs characterized by UV–visible spectroscopy, transmission electron microscopy, dynamic light scattering, and Fourier transform infrared spectroscopy. The concentration of produced nanoparticles was 1.31 µg/µl with a negative surface charge of − 15.3 mV and nanoparticles size ranging from 10–40 nm. The AgNPs was tested against four pathogenic microorganisms S. epidermidis, S. aureus, E. coli and P. aeruginosa. The nanoparticles exhibited strong minimum inhibitory concentration (MIC) values of 12.5 and 6.25 µg/µl and minimum bactericidal concentration (MBC) values of 12.5 and 12.5 µg/mL against E. coli and P. aeruginosa, respectively. One distinguishing feature of AgNPs produced by Cedecea sp. extracts is their extreme stability. Inductively coupled plasma mass spectrometry and thermogravimetric analysis demonstrated that the produced AgNPs are stable for periods exceeding one year. This means that their strong antibacterial effects, demonstrated against E. coli and P. aeruginosa biofilms, can be expected to persist during extended periods.Priyanka SinghSantosh PanditCarsten JersAbhayraj S. JoshiJørgen GarnæsIvan MijakovicNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Priyanka Singh Santosh Pandit Carsten Jers Abhayraj S. Joshi Jørgen Garnæs Ivan Mijakovic Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability |
description |
Abstract With multidrug-resistant bacterial pathogens on the rise, there is a strong research focus on alternative antibacterial treatments that could replace or complement classical antibiotics. Metallic nanoparticles, and in particular silver nanoparticles (AgNPs), have been shown to kill bacterial biofilms effectively, but their chemical synthesis often involves environmentally unfriendly by-products. Recent studies have shown that microbial and plant extracts can be used for the environmentally friendly synthesis of AgNPs. Herein we report a procedure for producing AgNPs using a putative Cedecea sp. strain isolated from soil. The isolated bacterial strain showed a remarkable potential for producing spherical, crystalline and stable AgNPs characterized by UV–visible spectroscopy, transmission electron microscopy, dynamic light scattering, and Fourier transform infrared spectroscopy. The concentration of produced nanoparticles was 1.31 µg/µl with a negative surface charge of − 15.3 mV and nanoparticles size ranging from 10–40 nm. The AgNPs was tested against four pathogenic microorganisms S. epidermidis, S. aureus, E. coli and P. aeruginosa. The nanoparticles exhibited strong minimum inhibitory concentration (MIC) values of 12.5 and 6.25 µg/µl and minimum bactericidal concentration (MBC) values of 12.5 and 12.5 µg/mL against E. coli and P. aeruginosa, respectively. One distinguishing feature of AgNPs produced by Cedecea sp. extracts is their extreme stability. Inductively coupled plasma mass spectrometry and thermogravimetric analysis demonstrated that the produced AgNPs are stable for periods exceeding one year. This means that their strong antibacterial effects, demonstrated against E. coli and P. aeruginosa biofilms, can be expected to persist during extended periods. |
format |
article |
author |
Priyanka Singh Santosh Pandit Carsten Jers Abhayraj S. Joshi Jørgen Garnæs Ivan Mijakovic |
author_facet |
Priyanka Singh Santosh Pandit Carsten Jers Abhayraj S. Joshi Jørgen Garnæs Ivan Mijakovic |
author_sort |
Priyanka Singh |
title |
Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability |
title_short |
Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability |
title_full |
Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability |
title_fullStr |
Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability |
title_full_unstemmed |
Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability |
title_sort |
silver nanoparticles produced from cedecea sp. exhibit antibiofilm activity and remarkable stability |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/8ac7add6f5ec4087b76e6a25dcfd299c |
work_keys_str_mv |
AT priyankasingh silvernanoparticlesproducedfromcedeceaspexhibitantibiofilmactivityandremarkablestability AT santoshpandit silvernanoparticlesproducedfromcedeceaspexhibitantibiofilmactivityandremarkablestability AT carstenjers silvernanoparticlesproducedfromcedeceaspexhibitantibiofilmactivityandremarkablestability AT abhayrajsjoshi silvernanoparticlesproducedfromcedeceaspexhibitantibiofilmactivityandremarkablestability AT jørgengarnæs silvernanoparticlesproducedfromcedeceaspexhibitantibiofilmactivityandremarkablestability AT ivanmijakovic silvernanoparticlesproducedfromcedeceaspexhibitantibiofilmactivityandremarkablestability |
_version_ |
1718385218349432832 |