Collinear search impairment is luminance contrast invariant
Abstract Collinear search impairment (CSI) is a phenomenon where a task-irrelevant collinear structure impairs a target search in a visual display. It has been suggested that CSI is monocular, occurs without the participants’ access to consciousness and is possibly processed at an early visual site...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8ada81e057cf427ebf1dd01ad437363b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Collinear search impairment (CSI) is a phenomenon where a task-irrelevant collinear structure impairs a target search in a visual display. It has been suggested that CSI is monocular, occurs without the participants’ access to consciousness and is possibly processed at an early visual site (e.g. V1). This effect has frequently been compared with a well-documented opposite effect called attentional capture (AC), in which salient and task-irrelevant basic features (e.g. color, orientation) enhance target detection. However, whether this phenomenon can be attributed to non-attentional factors such as collinear facilitation (CF) has not yet been formally tested. Here we used one well-established property of CF, i.e. that target contrast modulates its effect direction (facilitation vs suppression), to examine whether CSI shared similar signature profiles along different contrast levels. In other words, we tested whether CSI previously observed at the supra-threshold level was reduced or reversed at near-threshold contrast levels. Our results showed that, regardless of the luminance contrast levels, participants spent a longer time searching for targets displayed on the salient singleton collinear structure than those displayed off the structure. Contrast invariance suggests that it is unlikely that CSI is exclusively sub-served by an early vision mechanism (e.g. CF). |
---|