Some relations between Hodge numbers and invariant complex structures on compact nilmanifolds
Let N be a simply connected real nilpotent Lie group, n its Lie algebra, and € a lattice in N. If a left-invariant complex structure on N is Γ-rational, then HƏ̄s,t(Γ/N) ≃ HƏ̄s,t(nC) for each s; t. We can construct different left-invariant complex structures on one nilpotent Lie group by using the c...
Enregistré dans:
Auteur principal: | Yamada Takumi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/8adb3cad5d3c4186bb689b384fb9b8a3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Complex structures on the complexification of a real Lie algebra
par: Yamada Takumi
Publié: (2018) -
A Hodge-type decomposition of holomorphic Poisson cohomology on nilmanifolds
par: Poon Yat Sun, et autres
Publié: (2017) -
Ricci-flat and Einstein pseudoriemannian nilmanifolds
par: Conti Diego, et autres
Publié: (2019) -
Note on Dolbeault cohomology and Hodge structures up to bimeromorphisms
par: Angella Daniele, et autres
Publié: (2020) -
A Family of Complex Nilmanifolds with in finitely Many Real Homotopy Types
par: Latorre Adela, et autres
Publié: (2018)