GapClust is a light-weight approach distinguishing rare cells from voluminous single cell expression profiles
While rare cell type identification is indispensable in single cell studies, powerful tools with high detection accuracy and computational efficiency are still lacking. Here, the authors propose a light-weight algorithm which can distinguish rare cell types from voluminous single cell expression pro...
Guardado en:
Autores principales: | Botao Fa, Ting Wei, Yuan Zhou, Luke Johnston, Xin Yuan, Yanran Ma, Yue Zhang, Zhangsheng Yu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8ade08b8a643414e84ebe9771752ced7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Discovery of rare cells from voluminous single cell expression data
por: Aashi Jindal, et al.
Publicado: (2018) -
Archean continental crust formed by magma hybridization and voluminous partial melting
por: Juan David Hernández-Montenegro, et al.
Publicado: (2021) -
OptiClust, an Improved Method for Assigning Amplicon-Based Sequence Data to Operational Taxonomic Units
por: Sarah L. Westcott, et al.
Publicado: (2017) -
Elastic Correlation Adjusted Regression (ECAR) scores for high dimensional variable importance measuring
por: Yuan Zhou, et al.
Publicado: (2021) -
Three-Dimensional Magnetic Induction Tomography: Practical Implementation for Imaging throughout the Depth of a Low Conductive and Voluminous Body
por: Martin Klein, et al.
Publicado: (2021)