Quantitative MRI-based radiomics for noninvasively predicting molecular subtypes and survival in glioma patients
Abstract Gliomas can be classified into five molecular groups based on the status of IDH mutation, 1p/19q codeletion, and TERT promoter mutation, whereas they need to be obtained by biopsy or surgery. Thus, we aimed to use MRI-based radiomics to noninvasively predict the molecular groups and assess...
Guardado en:
Autores principales: | Jing Yan, Bin Zhang, Shuaitong Zhang, Jingliang Cheng, Xianzhi Liu, Weiwei Wang, Yuhao Dong, Lu Zhang, Xiaokai Mo, Qiuying Chen, Jin Fang, Fei Wang, Jie Tian, Shuixing Zhang, Zhenyu Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8adfc13b7d7e4796ad5cfc0874c1ed41 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Radiomics for the Prediction of Epilepsy in Patients With Frontal Glioma
por: Ankang Gao, et al.
Publicado: (2021) -
Multiparametric MRI Radiomics for the Early Prediction of Response to Chemoradiotherapy in Patients With Postoperative Residual Gliomas: An Initial Study
por: Zhaotao Zhang, et al.
Publicado: (2021) -
MRI-based radiomics signature is a quantitative prognostic biomarker for nasopharyngeal carcinoma
por: Xue Ming, et al.
Publicado: (2019) -
Deep Learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma
por: Zeju Li, et al.
Publicado: (2017) -
Development of a nomograph integrating radiomics and deep features based on MRI to predict the prognosis of high grade Gliomas
por: Yutao Wang, et al.
Publicado: (2021)