The Predictive Power of Regression Models to Determine Grass Weed Infestations in Cereals Based on Drone Imagery—Statistical and Practical Aspects
Site-specific weed management (SSWM) may reduce herbicide use by identifying weed patches and weed-free areas. However, one major constraint is robust weed detection algorithms that are able to predict weed infestations outside of the training data. This study investigates the predictive power of re...
Guardado en:
Autores principales: | Signe M. Jensen, Muhammad Javaid Akhter, Saiful Azim, Jesper Rasmussen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8af3983e8d5a492b80e4457298942e6c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep Neural Networks to Detect Weeds from Crops in Agricultural Environments in Real-Time: A Review
por: Ildar Rakhmatuiln, et al.
Publicado: (2021) -
Garden Pea used as a temporary crop to establish grass and legumes pastures: Effect on weed botanical composition
por: J. Rojas, et al.
Publicado: (2018) -
Weed biology and management
Publicado: (2001) -
Assessment of peculiarities of weed formation in oilseed radish agrophytocoenosis using different technological models
por: Tsytsiura,Yaroslav
Publicado: (2020) -
Integrated weed management practices and sustainable food production among farmers in Kwara State, Nigeria
por: Imoloame Emmanuel Oyamedan, et al.
Publicado: (2021)