Self-Adaptive Acceptance Rate-Driven Markov Chain Monte Carlo Method Applied to the Study of Magnetic Nanoparticles
A standard canonical Markov Chain Monte Carlo method implemented with a single-macrospin movement Metropolis dynamics was conducted to study the hysteretic properties of an ensemble of independent and non-interacting magnetic nanoparticles with uniaxial magneto-crystalline anisotropy randomly distri...
Guardado en:
Autores principales: | Juan Camilo Zapata, Johans Restrepo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8af619a4ba4f452f83a13da830029370 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Adaptive Magnetic Hamiltonian Monte Carlo
por: Wilson Tsakane Mongwe, et al.
Publicado: (2021) -
Markov Chain Abstractions of Electrochemical Reaction-Diffusion in Synaptic Transmission for Neuromorphic Computing
por: Margot Wagner, et al.
Publicado: (2021) -
Utilising Partial Momentum Refreshment in Separable Shadow Hamiltonian Hybrid Monte Carlo
por: Wilson Tsakane Mongwe, et al.
Publicado: (2021) -
Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis–Hastings algorithm
por: Xingpo Liu, et al.
Publicado: (2021) -
Research on Accelerated Testing of Cut-In Condition of Electric Automated Vehicles Based on Monte Carlo Simulation
por: Qin Xia, et al.
Publicado: (2021)