Machine learning and atherosclerotic cardiovascular disease risk prediction in a multi-ethnic population
Abstract The pooled cohort equations (PCE) predict atherosclerotic cardiovascular disease (ASCVD) risk in patients with characteristics within prespecified ranges and has uncertain performance among Asians or Hispanics. It is unknown if machine learning (ML) models can improve ASCVD risk prediction...
Guardado en:
Autores principales: | Andrew Ward, Ashish Sarraju, Sukyung Chung, Jiang Li, Robert Harrington, Paul Heidenreich, Latha Palaniappan, David Scheinker, Fatima Rodriguez |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8af9c8a7db8d4652b878ad12571c3ae7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19
por: Sonu Subudhi, et al.
Publicado: (2021) -
Second opinion needed: communicating uncertainty in medical machine learning
por: Benjamin Kompa, et al.
Publicado: (2021) -
Machine intelligence in healthcare—perspectives on trustworthiness, explainability, usability, and transparency
por: Christine M. Cutillo, et al.
Publicado: (2020) -
Management of cardiovascular disease using an mHealth tool: a randomized clinical trial
por: Si-Hyuck Kang, et al.
Publicado: (2021) -
Risk of acute respiratory infection and acute cardiovascular events following acute respiratory infection among adults with increased cardiovascular risk in England between 2008 and 2018: a retrospective, population-based cohort study
por: Jennifer A Davidson, MSc, et al.
Publicado: (2021)