Zinc allocation to and within Arabidopsis halleri seeds: Different strategies of metal homeostasis in accessions under divergent selection pressure
Abstract Vegetative tissues of metal(loid)‐hyperaccumulating plants are widely used to study plant metal homeostasis and adaptation to metalliferous soils, but little is known about these mechanisms in their seeds. We explored essential element allocation to Arabidopsis halleri seeds, a species that...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8b0b20dd269d4e2f860f59e3390eed5c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8b0b20dd269d4e2f860f59e3390eed5c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8b0b20dd269d4e2f860f59e3390eed5c2021-11-14T13:45:25ZZinc allocation to and within Arabidopsis halleri seeds: Different strategies of metal homeostasis in accessions under divergent selection pressure2575-626510.1002/pei3.10032https://doaj.org/article/8b0b20dd269d4e2f860f59e3390eed5c2020-12-01T00:00:00Zhttps://doi.org/10.1002/pei3.10032https://doaj.org/toc/2575-6265Abstract Vegetative tissues of metal(loid)‐hyperaccumulating plants are widely used to study plant metal homeostasis and adaptation to metalliferous soils, but little is known about these mechanisms in their seeds. We explored essential element allocation to Arabidopsis halleri seeds, a species that faces a particular trade‐off between meeting nutrient requirements and minimizing toxicity risks. Combining advanced elemental mapping (micro‐particle induced X‐ray emission) with chemical analyses of plant and soil material, we investigated natural variation in Zn allocation to A. halleri seeds from non‐metalliferous and metalliferous locations. We also assessed the tissue‐level distribution and concentration of other nutrients to identify possible disorders in seed homeostasis. Unexpectedly, the highest Zn concentration was found in seeds of a non‐metalliferous lowland location, whereas concentrations were relatively low in all other seed samples—including metallicolous ones. The abundance of other nutrients in seeds was unaffected by metalliferous site conditions. Our findings depict contrasting strategies of Zn allocation to A. halleri seeds: increased delivery at lowland non‐metalliferous locations (a likely natural selection toward enhanced Zn‐hyperaccumulation in vegetative tissues) versus limited translocation at metalliferous sites where external Zn concentrations are toxic for non‐tolerant plants. Both strategies are worth exploring further to resolve metal homeostasis mechanisms and their effects on seed development and nutrition.Alicja Babst‐KosteckaWojciech J. PrzybyłowiczBarbara SegetJolanta Mesjasz‐PrzybyłowiczWileyarticleadaptationfacultative metallophytehomeostasismetal hyperaccumulationmicro‐PIXEpseudometallophyteEnvironmental sciencesGE1-350BotanyQK1-989ENPlant-Environment Interactions, Vol 1, Iss 3, Pp 207-220 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
adaptation facultative metallophyte homeostasis metal hyperaccumulation micro‐PIXE pseudometallophyte Environmental sciences GE1-350 Botany QK1-989 |
spellingShingle |
adaptation facultative metallophyte homeostasis metal hyperaccumulation micro‐PIXE pseudometallophyte Environmental sciences GE1-350 Botany QK1-989 Alicja Babst‐Kostecka Wojciech J. Przybyłowicz Barbara Seget Jolanta Mesjasz‐Przybyłowicz Zinc allocation to and within Arabidopsis halleri seeds: Different strategies of metal homeostasis in accessions under divergent selection pressure |
description |
Abstract Vegetative tissues of metal(loid)‐hyperaccumulating plants are widely used to study plant metal homeostasis and adaptation to metalliferous soils, but little is known about these mechanisms in their seeds. We explored essential element allocation to Arabidopsis halleri seeds, a species that faces a particular trade‐off between meeting nutrient requirements and minimizing toxicity risks. Combining advanced elemental mapping (micro‐particle induced X‐ray emission) with chemical analyses of plant and soil material, we investigated natural variation in Zn allocation to A. halleri seeds from non‐metalliferous and metalliferous locations. We also assessed the tissue‐level distribution and concentration of other nutrients to identify possible disorders in seed homeostasis. Unexpectedly, the highest Zn concentration was found in seeds of a non‐metalliferous lowland location, whereas concentrations were relatively low in all other seed samples—including metallicolous ones. The abundance of other nutrients in seeds was unaffected by metalliferous site conditions. Our findings depict contrasting strategies of Zn allocation to A. halleri seeds: increased delivery at lowland non‐metalliferous locations (a likely natural selection toward enhanced Zn‐hyperaccumulation in vegetative tissues) versus limited translocation at metalliferous sites where external Zn concentrations are toxic for non‐tolerant plants. Both strategies are worth exploring further to resolve metal homeostasis mechanisms and their effects on seed development and nutrition. |
format |
article |
author |
Alicja Babst‐Kostecka Wojciech J. Przybyłowicz Barbara Seget Jolanta Mesjasz‐Przybyłowicz |
author_facet |
Alicja Babst‐Kostecka Wojciech J. Przybyłowicz Barbara Seget Jolanta Mesjasz‐Przybyłowicz |
author_sort |
Alicja Babst‐Kostecka |
title |
Zinc allocation to and within Arabidopsis halleri seeds: Different strategies of metal homeostasis in accessions under divergent selection pressure |
title_short |
Zinc allocation to and within Arabidopsis halleri seeds: Different strategies of metal homeostasis in accessions under divergent selection pressure |
title_full |
Zinc allocation to and within Arabidopsis halleri seeds: Different strategies of metal homeostasis in accessions under divergent selection pressure |
title_fullStr |
Zinc allocation to and within Arabidopsis halleri seeds: Different strategies of metal homeostasis in accessions under divergent selection pressure |
title_full_unstemmed |
Zinc allocation to and within Arabidopsis halleri seeds: Different strategies of metal homeostasis in accessions under divergent selection pressure |
title_sort |
zinc allocation to and within arabidopsis halleri seeds: different strategies of metal homeostasis in accessions under divergent selection pressure |
publisher |
Wiley |
publishDate |
2020 |
url |
https://doaj.org/article/8b0b20dd269d4e2f860f59e3390eed5c |
work_keys_str_mv |
AT alicjababstkostecka zincallocationtoandwithinarabidopsishalleriseedsdifferentstrategiesofmetalhomeostasisinaccessionsunderdivergentselectionpressure AT wojciechjprzybyłowicz zincallocationtoandwithinarabidopsishalleriseedsdifferentstrategiesofmetalhomeostasisinaccessionsunderdivergentselectionpressure AT barbaraseget zincallocationtoandwithinarabidopsishalleriseedsdifferentstrategiesofmetalhomeostasisinaccessionsunderdivergentselectionpressure AT jolantamesjaszprzybyłowicz zincallocationtoandwithinarabidopsishalleriseedsdifferentstrategiesofmetalhomeostasisinaccessionsunderdivergentselectionpressure |
_version_ |
1718429059758686208 |