Daily Load Forecasting Based on a Combination of Classification and Regression Tree and Deep Belief Network
The next-day load forecasting is complex due to the load pattern variations driven by external factors, such as weather and time. This study proposes a hybrid model that incorporates the Classification and Regression Tree (CART) with pruning conditions and a Deep Belief Network (DBN) to improve fore...
Guardado en:
Autores principales: | Pyae Pyae Phyo, Chawalit Jeenanunta |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8b0ff91b3ffb46669facc8a72795cf27 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Mothers Matter: Using Regression Tree Algorithms to Predict Adolescents’ Sharing of Drunk References on Social Media
por: Sebastian Kurten, et al.
Publicado: (2021) -
FORECASTING THE INVESTMENT INDICATORS ON THE BASIS OF SOLUTION TREES
por: Olga V. Kitova, et al.
Publicado: (2017) -
Performance Evaluation of Machine Learning Algorithms for Seismic Retrofit Cost Estimation Using Structural Parameters
por: Naser Safaeian Hamzehkolaei, et al.
Publicado: (2021) -
Study on the relationship between expression patterns of cocaine-and amphetamine regulated transcript and hormones secretion in porcine ovarian follicles
por: Li,Pengfei, et al.
Publicado: (2018) -
Enhanced Deep Belief Network Based on Ensemble Learning and Tree-Structured of Parzen Estimators: An Optimal Photovoltaic Power Forecasting Method
por: Mohamed Massaoudi, et al.
Publicado: (2021)