GNER: A Generative Model for Geological Named Entity Recognition Without Labeled Data Using Deep Learning
Abstract A variety of detailed data about geological topics and geoscience knowledge are buried in the geoscience literature and rarely used. Named entity recognition (NER) provides both opportunities and challenges to leverage this wealth of data in the geoscience literature for data analysis and f...
Guardado en:
Autores principales: | Qinjun Qiu, Zhong Xie, Liang Wu, Liufeng Tao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Geophysical Union (AGU)
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8b19d8b977604258a40f352ff20ac254 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Intelligent Recognition of Ore‐Forming Anomalies Based on Multisource Data Fusion: A Case Study of the Daqiao Mining Area, Gansu Province, China
por: Huihui Cai, et al.
Publicado: (2021) -
Domain Specific Entity Recognition With Semantic-Based Deep Learning Approach
por: Quoc Hung Ngo, et al.
Publicado: (2021) -
Multi‐Order Carbon Spectral Imager: A Sensor Concept for Carbon Cycle Investigations
por: Jeffrey L. Hall, et al.
Publicado: (2019) -
The Controlling Factors of Atmospheric Formaldehyde (HCHO) in Amazon as Seen From Satellite
por: Yuxiang Zhang, et al.
Publicado: (2019) -
Sentinel‐Based Inventory of Thermokarst Lakes and Ponds Across Permafrost Landscapes on the Qinghai‐Tibet Plateau
por: Zhiqiang Wei, et al.
Publicado: (2021)