Can Deep Learning-Based Volumetric Analysis Predict Oxygen Demand Increase in Patients with COVID-19 Pneumonia?
<i>Background and Objectives</i>: This study aimed to investigate whether predictive indicators for the deterioration of respiratory status can be derived from the deep learning data analysis of initial chest computed tomography (CT) scans of patients with coronavirus disease 2019 (COVID...
Guardado en:
Autores principales: | Marie Takahashi, Tomoyuki Fujioka, Toshihiro Horii, Koichiro Kimura, Mizuki Kimura, Yurika Hashimoto, Yoshio Kitazume, Mitsuhiro Kishino, Ukihide Tateishi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8b2884b6076343c2995406c06af04faf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Artificial intelligence as a powerful tool in overcoming substantial health problems of the COVID-19 pandemic
por: Jokanovic Vukoman, et al.
Publicado: (2021) -
Chest-Related Imaging Investigations During Multiple Waves of COVID-19 Infection in Hong Kong
por: Kei Shing Ng, et al.
Publicado: (2021) -
Radiological Findings From 101 Patients With Novel Coronavirus Disease 2019 (COVID-19) in Hamadan, West of Iran: Typical and Atypical Features
por: Farideh Gharekhanloo, et al.
Publicado: (2021) -
Thoracic cancer
Publicado: (2010) -
Deep learning-based fully automated Z-axis coverage range definition from scout scans to eliminate overscanning in chest CT imaging
por: Yazdan Salimi, et al.
Publicado: (2021)