DEEP picker is a deep neural network for accurate deconvolution of complex two-dimensional NMR spectra

The analysis of NMR spectra of complex biochemical samples with respect to individual resonances is challenging but critically important. Here, the authors present a deep learning-based method that accelerates this process also for crowded NMR data that are non-trivial to analyze, even by expert NMR...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Da-Wei Li, Alexandar L. Hansen, Chunhua Yuan, Lei Bruschweiler-Li, Rafael Brüschweiler
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/8b2f9505fa2d4e0fac6a7c33108a2d80
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8b2f9505fa2d4e0fac6a7c33108a2d80
record_format dspace
spelling oai:doaj.org-article:8b2f9505fa2d4e0fac6a7c33108a2d802021-12-02T19:09:54ZDEEP picker is a deep neural network for accurate deconvolution of complex two-dimensional NMR spectra10.1038/s41467-021-25496-52041-1723https://doaj.org/article/8b2f9505fa2d4e0fac6a7c33108a2d802021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25496-5https://doaj.org/toc/2041-1723The analysis of NMR spectra of complex biochemical samples with respect to individual resonances is challenging but critically important. Here, the authors present a deep learning-based method that accelerates this process also for crowded NMR data that are non-trivial to analyze, even by expert NMR spectroscopists.Da-Wei LiAlexandar L. HansenChunhua YuanLei Bruschweiler-LiRafael BrüschweilerNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Da-Wei Li
Alexandar L. Hansen
Chunhua Yuan
Lei Bruschweiler-Li
Rafael Brüschweiler
DEEP picker is a deep neural network for accurate deconvolution of complex two-dimensional NMR spectra
description The analysis of NMR spectra of complex biochemical samples with respect to individual resonances is challenging but critically important. Here, the authors present a deep learning-based method that accelerates this process also for crowded NMR data that are non-trivial to analyze, even by expert NMR spectroscopists.
format article
author Da-Wei Li
Alexandar L. Hansen
Chunhua Yuan
Lei Bruschweiler-Li
Rafael Brüschweiler
author_facet Da-Wei Li
Alexandar L. Hansen
Chunhua Yuan
Lei Bruschweiler-Li
Rafael Brüschweiler
author_sort Da-Wei Li
title DEEP picker is a deep neural network for accurate deconvolution of complex two-dimensional NMR spectra
title_short DEEP picker is a deep neural network for accurate deconvolution of complex two-dimensional NMR spectra
title_full DEEP picker is a deep neural network for accurate deconvolution of complex two-dimensional NMR spectra
title_fullStr DEEP picker is a deep neural network for accurate deconvolution of complex two-dimensional NMR spectra
title_full_unstemmed DEEP picker is a deep neural network for accurate deconvolution of complex two-dimensional NMR spectra
title_sort deep picker is a deep neural network for accurate deconvolution of complex two-dimensional nmr spectra
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/8b2f9505fa2d4e0fac6a7c33108a2d80
work_keys_str_mv AT daweili deeppickerisadeepneuralnetworkforaccuratedeconvolutionofcomplextwodimensionalnmrspectra
AT alexandarlhansen deeppickerisadeepneuralnetworkforaccuratedeconvolutionofcomplextwodimensionalnmrspectra
AT chunhuayuan deeppickerisadeepneuralnetworkforaccuratedeconvolutionofcomplextwodimensionalnmrspectra
AT leibruschweilerli deeppickerisadeepneuralnetworkforaccuratedeconvolutionofcomplextwodimensionalnmrspectra
AT rafaelbruschweiler deeppickerisadeepneuralnetworkforaccuratedeconvolutionofcomplextwodimensionalnmrspectra
_version_ 1718377100801474560