DEEP picker is a deep neural network for accurate deconvolution of complex two-dimensional NMR spectra
The analysis of NMR spectra of complex biochemical samples with respect to individual resonances is challenging but critically important. Here, the authors present a deep learning-based method that accelerates this process also for crowded NMR data that are non-trivial to analyze, even by expert NMR...
Guardado en:
Autores principales: | Da-Wei Li, Alexandar L. Hansen, Chunhua Yuan, Lei Bruschweiler-Li, Rafael Brüschweiler |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8b2f9505fa2d4e0fac6a7c33108a2d80 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Order-disorder transitions govern kinetic cooperativity and allostery of monomeric human glucokinase.
por: Mioara Larion, et al.
Publicado: (2012) -
Deep neural networks for accurate predictions of crystal stability
por: Weike Ye, et al.
Publicado: (2018) -
Deep convolutional neural networks for accurate somatic mutation detection
por: Sayed Mohammad Ebrahim Sahraeian, et al.
Publicado: (2019) -
Deep generative neural network for accurate drug response imputation
por: Peilin Jia, et al.
Publicado: (2021) -
DeepSleep convolutional neural network allows accurate and fast detection of sleep arousal
por: Hongyang Li, et al.
Publicado: (2021)