On the Volume of Sections of the Cube

We study the properties of the maximal volume k-dimensional sections of the n-dimensional cube [−1, 1]n. We obtain a first order necessary condition for a k-dimensional subspace to be a local maximizer of the volume of such sections, which we formulate in a geometric way. We estimate the length of t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ivanov Grigory, Tsiutsiurupa Igor
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/8b4c095f33f9465a8d086a653517305c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We study the properties of the maximal volume k-dimensional sections of the n-dimensional cube [−1, 1]n. We obtain a first order necessary condition for a k-dimensional subspace to be a local maximizer of the volume of such sections, which we formulate in a geometric way. We estimate the length of the projection of a vector of the standard basis of ℝn onto a k-dimensional subspace that maximizes the volume of the intersection. We find the optimal upper bound on the volume of a planar section of the cube [−1, 1]n, n ≥ 2.