On the Volume of Sections of the Cube

We study the properties of the maximal volume k-dimensional sections of the n-dimensional cube [−1, 1]n. We obtain a first order necessary condition for a k-dimensional subspace to be a local maximizer of the volume of such sections, which we formulate in a geometric way. We estimate the length of t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ivanov Grigory, Tsiutsiurupa Igor
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/8b4c095f33f9465a8d086a653517305c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8b4c095f33f9465a8d086a653517305c
record_format dspace
spelling oai:doaj.org-article:8b4c095f33f9465a8d086a653517305c2021-12-05T14:10:38ZOn the Volume of Sections of the Cube2299-327410.1515/agms-2020-0103https://doaj.org/article/8b4c095f33f9465a8d086a653517305c2021-01-01T00:00:00Zhttps://doi.org/10.1515/agms-2020-0103https://doaj.org/toc/2299-3274We study the properties of the maximal volume k-dimensional sections of the n-dimensional cube [−1, 1]n. We obtain a first order necessary condition for a k-dimensional subspace to be a local maximizer of the volume of such sections, which we formulate in a geometric way. We estimate the length of the projection of a vector of the standard basis of ℝn onto a k-dimensional subspace that maximizes the volume of the intersection. We find the optimal upper bound on the volume of a planar section of the cube [−1, 1]n, n ≥ 2.Ivanov GrigoryTsiutsiurupa IgorDe Gruyterarticletight framesection of cubevolumeball’s inequality52a3849q2052a4015a45AnalysisQA299.6-433ENAnalysis and Geometry in Metric Spaces, Vol 9, Iss 1, Pp 1-18 (2021)
institution DOAJ
collection DOAJ
language EN
topic tight frame
section of cube
volume
ball’s inequality
52a38
49q20
52a40
15a45
Analysis
QA299.6-433
spellingShingle tight frame
section of cube
volume
ball’s inequality
52a38
49q20
52a40
15a45
Analysis
QA299.6-433
Ivanov Grigory
Tsiutsiurupa Igor
On the Volume of Sections of the Cube
description We study the properties of the maximal volume k-dimensional sections of the n-dimensional cube [−1, 1]n. We obtain a first order necessary condition for a k-dimensional subspace to be a local maximizer of the volume of such sections, which we formulate in a geometric way. We estimate the length of the projection of a vector of the standard basis of ℝn onto a k-dimensional subspace that maximizes the volume of the intersection. We find the optimal upper bound on the volume of a planar section of the cube [−1, 1]n, n ≥ 2.
format article
author Ivanov Grigory
Tsiutsiurupa Igor
author_facet Ivanov Grigory
Tsiutsiurupa Igor
author_sort Ivanov Grigory
title On the Volume of Sections of the Cube
title_short On the Volume of Sections of the Cube
title_full On the Volume of Sections of the Cube
title_fullStr On the Volume of Sections of the Cube
title_full_unstemmed On the Volume of Sections of the Cube
title_sort on the volume of sections of the cube
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/8b4c095f33f9465a8d086a653517305c
work_keys_str_mv AT ivanovgrigory onthevolumeofsectionsofthecube
AT tsiutsiurupaigor onthevolumeofsectionsofthecube
_version_ 1718371850913841152