On the Volume of Sections of the Cube
We study the properties of the maximal volume k-dimensional sections of the n-dimensional cube [−1, 1]n. We obtain a first order necessary condition for a k-dimensional subspace to be a local maximizer of the volume of such sections, which we formulate in a geometric way. We estimate the length of t...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8b4c095f33f9465a8d086a653517305c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8b4c095f33f9465a8d086a653517305c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8b4c095f33f9465a8d086a653517305c2021-12-05T14:10:38ZOn the Volume of Sections of the Cube2299-327410.1515/agms-2020-0103https://doaj.org/article/8b4c095f33f9465a8d086a653517305c2021-01-01T00:00:00Zhttps://doi.org/10.1515/agms-2020-0103https://doaj.org/toc/2299-3274We study the properties of the maximal volume k-dimensional sections of the n-dimensional cube [−1, 1]n. We obtain a first order necessary condition for a k-dimensional subspace to be a local maximizer of the volume of such sections, which we formulate in a geometric way. We estimate the length of the projection of a vector of the standard basis of ℝn onto a k-dimensional subspace that maximizes the volume of the intersection. We find the optimal upper bound on the volume of a planar section of the cube [−1, 1]n, n ≥ 2.Ivanov GrigoryTsiutsiurupa IgorDe Gruyterarticletight framesection of cubevolumeball’s inequality52a3849q2052a4015a45AnalysisQA299.6-433ENAnalysis and Geometry in Metric Spaces, Vol 9, Iss 1, Pp 1-18 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
tight frame section of cube volume ball’s inequality 52a38 49q20 52a40 15a45 Analysis QA299.6-433 |
spellingShingle |
tight frame section of cube volume ball’s inequality 52a38 49q20 52a40 15a45 Analysis QA299.6-433 Ivanov Grigory Tsiutsiurupa Igor On the Volume of Sections of the Cube |
description |
We study the properties of the maximal volume k-dimensional sections of the n-dimensional cube [−1, 1]n. We obtain a first order necessary condition for a k-dimensional subspace to be a local maximizer of the volume of such sections, which we formulate in a geometric way. We estimate the length of the projection of a vector of the standard basis of ℝn onto a k-dimensional subspace that maximizes the volume of the intersection. We find the optimal upper bound on the volume of a planar section of the cube [−1, 1]n, n ≥ 2. |
format |
article |
author |
Ivanov Grigory Tsiutsiurupa Igor |
author_facet |
Ivanov Grigory Tsiutsiurupa Igor |
author_sort |
Ivanov Grigory |
title |
On the Volume of Sections of the Cube |
title_short |
On the Volume of Sections of the Cube |
title_full |
On the Volume of Sections of the Cube |
title_fullStr |
On the Volume of Sections of the Cube |
title_full_unstemmed |
On the Volume of Sections of the Cube |
title_sort |
on the volume of sections of the cube |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/8b4c095f33f9465a8d086a653517305c |
work_keys_str_mv |
AT ivanovgrigory onthevolumeofsectionsofthecube AT tsiutsiurupaigor onthevolumeofsectionsofthecube |
_version_ |
1718371850913841152 |