On the Volume of Sections of the Cube
We study the properties of the maximal volume k-dimensional sections of the n-dimensional cube [−1, 1]n. We obtain a first order necessary condition for a k-dimensional subspace to be a local maximizer of the volume of such sections, which we formulate in a geometric way. We estimate the length of t...
Guardado en:
Autores principales: | Ivanov Grigory, Tsiutsiurupa Igor |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8b4c095f33f9465a8d086a653517305c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On global classical solutions to one-dimensional compressible Navier–Stokes/Allen–Cahn system with density-dependent viscosity and vacuum
por: Menglong Su
Publicado: (2021) -
Determinantal inequalities of Hua-Marcus-Zhang type for quaternion matrices
por: Hong Yan, et al.
Publicado: (2021) -
Qualitative analysis for the nonlinear fractional Hartree type system with nonlocal interaction
por: Wang Jun
Publicado: (2021) -
k-super cube root cube mean labeling of graphs
por: Princy Kala,V.
Publicado: (2021) -
Inverse problem for cracked inhomogeneous Kirchhoff–Love plate with two hinged rigid inclusions
por: Nyurgun Lazarev
Publicado: (2021)