Advances in Rootstock Breeding of Nut Trees: Objectives and Strategies

The production and consumption of nuts are increasing in the world due to strong economic returns and the nutritional value of their products. With the increasing role and importance given to nuts (i.e., walnuts, hazelnut, pistachio, pecan, almond) in a balanced and healthy diet and their benefits t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kourosh Vahdati, Saadat Sarikhani, Mohammad Mehdi Arab, Charles A. Leslie, Abhaya M. Dandekar, Neus Aletà, Beatriz Bielsa, Thomas M. Gradziel, Álvaro Montesinos, María José Rubio-Cabetas, Gina M. Sideli, Ümit Serdar, Burak Akyüz, Gabriele Loris Beccaro, Dario Donno, Mercè Rovira, Louise Ferguson, Mohammad Akbari, Abdollatif Sheikhi, Adriana F. Sestras, Salih Kafkas, Aibibula Paizila, Mahmoud Reza Roozban, Amandeep Kaur, Srijana Panta, Lu Zhang, Radu E. Sestras, Shawn A. Mehlenbacher
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/8b4f93151cb34c11810932208f95b6b6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The production and consumption of nuts are increasing in the world due to strong economic returns and the nutritional value of their products. With the increasing role and importance given to nuts (i.e., walnuts, hazelnut, pistachio, pecan, almond) in a balanced and healthy diet and their benefits to human health, breeding of the nuts species has also been stepped up. Most recent fruit breeding programs have focused on scion genetic improvement. However, the use of locally adapted grafted rootstocks also enhanced the productivity and quality of tree fruit crops. Grafting is an ancient horticultural practice used in nut crops to manipulate scion phenotype and productivity and overcome biotic and abiotic stresses. There are complex rootstock breeding objectives and physiological and molecular aspects of rootstock–scion interactions in nut crops. In this review, we provide an overview of these, considering the mechanisms involved in nutrient and water uptake, regulation of phytohormones, and rootstock influences on the scion molecular processes, including long-distance gene silencing and trans-grafting. Understanding the mechanisms resulting from rootstock × scion × environmental interactions will contribute to developing new rootstocks with resilience in the face of climate change, but also of the multitude of diseases and pests.