Control Problem Related to 2D Stokes Equations with Variable Density and Viscosity
We study an optimal control problem for the stationary Stokes equations with variable density and viscosity in a 2D bounded domain under mixed boundary conditions. On in-flow and out-flow parts of the boundary, nonhomogeneous Dirichlet boundary conditions are used, while on the solid walls of the fl...
Guardado en:
Autores principales: | Evgenii S. Baranovskii, Eber Lenes, Exequiel Mallea-Zepeda, Jonnathan Rodríguez, Lautaro Vásquez |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8b6e40dc678a44b6bad2815853e37fba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A subgrid stabilized method for Navier-Stokes equations with nonlinear slip boundary conditions
por: Xiaoxia Dai, et al.
Publicado: (2021) -
Logarithmically improved regularity criteria for the Navier-Stokes equations in homogeneous Besov spaces
por: Nguyen Anh Dao, et al.
Publicado: (2021) -
Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces
por: Jlali Lotfi
Publicado: (2021) -
Analysis of Stokes system with solution-dependent subdifferential boundary conditions
por: Jing Zhao, et al.
Publicado: (2021) -
On singular solutions of the stationary Navier-Stokes system in power cusp domains
por: Konstantinas Pileckas, et al.
Publicado: (2021)