Control Problem Related to 2D Stokes Equations with Variable Density and Viscosity
We study an optimal control problem for the stationary Stokes equations with variable density and viscosity in a 2D bounded domain under mixed boundary conditions. On in-flow and out-flow parts of the boundary, nonhomogeneous Dirichlet boundary conditions are used, while on the solid walls of the fl...
Enregistré dans:
Auteurs principaux: | Evgenii S. Baranovskii, Eber Lenes, Exequiel Mallea-Zepeda, Jonnathan Rodríguez, Lautaro Vásquez |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/8b6e40dc678a44b6bad2815853e37fba |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A subgrid stabilized method for Navier-Stokes equations with nonlinear slip boundary conditions
par: Xiaoxia Dai, et autres
Publié: (2021) -
Logarithmically improved regularity criteria for the Navier-Stokes equations in homogeneous Besov spaces
par: Nguyen Anh Dao, et autres
Publié: (2021) -
Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces
par: Jlali Lotfi
Publié: (2021) -
Analysis of Stokes system with solution-dependent subdifferential boundary conditions
par: Jing Zhao, et autres
Publié: (2021) -
On singular solutions of the stationary Navier-Stokes system in power cusp domains
par: Konstantinas Pileckas, et autres
Publié: (2021)