Multiparameter optimisation of a magneto-optical trap using deep learning

Dynamics in cold atomic ensembles involve complex many-body interactions that are hard to treat analytically. Here, the authors use machine learning to optimise the cooling and trapping of neutral atoms, showing an improvement in the resulting resonant optical depth compared to more traditional solu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: A. D. Tranter, H. J. Slatyer, M. R. Hush, A. C. Leung, J. L. Everett, K. V. Paul, P. Vernaz-Gris, P. K. Lam, B. C. Buchler, G. T. Campbell
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/8b79c7d156a34486ac9f506b132ab325
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Dynamics in cold atomic ensembles involve complex many-body interactions that are hard to treat analytically. Here, the authors use machine learning to optimise the cooling and trapping of neutral atoms, showing an improvement in the resulting resonant optical depth compared to more traditional solutions.