Multiparameter optimisation of a magneto-optical trap using deep learning

Dynamics in cold atomic ensembles involve complex many-body interactions that are hard to treat analytically. Here, the authors use machine learning to optimise the cooling and trapping of neutral atoms, showing an improvement in the resulting resonant optical depth compared to more traditional solu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: A. D. Tranter, H. J. Slatyer, M. R. Hush, A. C. Leung, J. L. Everett, K. V. Paul, P. Vernaz-Gris, P. K. Lam, B. C. Buchler, G. T. Campbell
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/8b79c7d156a34486ac9f506b132ab325
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8b79c7d156a34486ac9f506b132ab325
record_format dspace
spelling oai:doaj.org-article:8b79c7d156a34486ac9f506b132ab3252021-12-02T14:39:44ZMultiparameter optimisation of a magneto-optical trap using deep learning10.1038/s41467-018-06847-12041-1723https://doaj.org/article/8b79c7d156a34486ac9f506b132ab3252018-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-06847-1https://doaj.org/toc/2041-1723Dynamics in cold atomic ensembles involve complex many-body interactions that are hard to treat analytically. Here, the authors use machine learning to optimise the cooling and trapping of neutral atoms, showing an improvement in the resulting resonant optical depth compared to more traditional solutions.A. D. TranterH. J. SlatyerM. R. HushA. C. LeungJ. L. EverettK. V. PaulP. Vernaz-GrisP. K. LamB. C. BuchlerG. T. CampbellNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-8 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
A. D. Tranter
H. J. Slatyer
M. R. Hush
A. C. Leung
J. L. Everett
K. V. Paul
P. Vernaz-Gris
P. K. Lam
B. C. Buchler
G. T. Campbell
Multiparameter optimisation of a magneto-optical trap using deep learning
description Dynamics in cold atomic ensembles involve complex many-body interactions that are hard to treat analytically. Here, the authors use machine learning to optimise the cooling and trapping of neutral atoms, showing an improvement in the resulting resonant optical depth compared to more traditional solutions.
format article
author A. D. Tranter
H. J. Slatyer
M. R. Hush
A. C. Leung
J. L. Everett
K. V. Paul
P. Vernaz-Gris
P. K. Lam
B. C. Buchler
G. T. Campbell
author_facet A. D. Tranter
H. J. Slatyer
M. R. Hush
A. C. Leung
J. L. Everett
K. V. Paul
P. Vernaz-Gris
P. K. Lam
B. C. Buchler
G. T. Campbell
author_sort A. D. Tranter
title Multiparameter optimisation of a magneto-optical trap using deep learning
title_short Multiparameter optimisation of a magneto-optical trap using deep learning
title_full Multiparameter optimisation of a magneto-optical trap using deep learning
title_fullStr Multiparameter optimisation of a magneto-optical trap using deep learning
title_full_unstemmed Multiparameter optimisation of a magneto-optical trap using deep learning
title_sort multiparameter optimisation of a magneto-optical trap using deep learning
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/8b79c7d156a34486ac9f506b132ab325
work_keys_str_mv AT adtranter multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning
AT hjslatyer multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning
AT mrhush multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning
AT acleung multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning
AT jleverett multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning
AT kvpaul multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning
AT pvernazgris multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning
AT pklam multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning
AT bcbuchler multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning
AT gtcampbell multiparameteroptimisationofamagnetoopticaltrapusingdeeplearning
_version_ 1718390544194863104