Multiparameter optimisation of a magneto-optical trap using deep learning
Dynamics in cold atomic ensembles involve complex many-body interactions that are hard to treat analytically. Here, the authors use machine learning to optimise the cooling and trapping of neutral atoms, showing an improvement in the resulting resonant optical depth compared to more traditional solu...
Guardado en:
Autores principales: | A. D. Tranter, H. J. Slatyer, M. R. Hush, A. C. Leung, J. L. Everett, K. V. Paul, P. Vernaz-Gris, P. K. Lam, B. C. Buchler, G. T. Campbell |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8b79c7d156a34486ac9f506b132ab325 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Magneto-optical painting of heat current
por: Jian Wang, et al.
Publicado: (2020) -
Magneto-optical design of anomalous Nernst thermopile
por: Jian Wang, et al.
Publicado: (2021) -
Magneto-optical diagnosis of symptomatic malaria in Papua New Guinea
por: L. Arndt, et al.
Publicado: (2021) -
Efficient computation of the Nagaoka–Hayashi bound for multiparameter estimation with separable measurements
por: Lorcán O. Conlon, et al.
Publicado: (2021) -
Topological magneto-optical effects and their quantization in noncoplanar antiferromagnets
por: Wanxiang Feng, et al.
Publicado: (2020)