Atomic-scale study of the amorphous-to-crystalline phase transition mechanism in GeTe thin films

Abstract The underlying mechanism driving the structural amorphous-to-crystalline transition in Group VI chalcogenides is still a matter of debate even in the simplest GeTe system. We exploit the extreme sensitivity of 57Fe emission Mössbauer spectroscopy, following dilute implantation of 57Mn (T½ =...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: R. Mantovan, R. Fallica, A. Mokhles Gerami, T. E. Mølholt, C. Wiemer, M. Longo, H. P. Gunnlaugsson, K. Johnston, H. Masenda, D. Naidoo, M. Ncube, K. Bharuth-Ram, M. Fanciulli, H. P. Gislason, G. Langouche, S. Ólafsson, G. Weyer
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8b8010c07dc04e4ba12f057b6f4b397d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8b8010c07dc04e4ba12f057b6f4b397d
record_format dspace
spelling oai:doaj.org-article:8b8010c07dc04e4ba12f057b6f4b397d2021-12-02T16:06:43ZAtomic-scale study of the amorphous-to-crystalline phase transition mechanism in GeTe thin films10.1038/s41598-017-08275-52045-2322https://doaj.org/article/8b8010c07dc04e4ba12f057b6f4b397d2017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-08275-5https://doaj.org/toc/2045-2322Abstract The underlying mechanism driving the structural amorphous-to-crystalline transition in Group VI chalcogenides is still a matter of debate even in the simplest GeTe system. We exploit the extreme sensitivity of 57Fe emission Mössbauer spectroscopy, following dilute implantation of 57Mn (T½ = 1.5 min) at ISOLDE/CERN, to study the electronic charge distribution in the immediate vicinity of the 57Fe probe substituting Ge (FeGe), and to interrogate the local environment of FeGe over the amorphous-crystalline phase transition in GeTe thin films. Our results show that the local structure of as-sputtered amorphous GeTe is a combination of tetrahedral and defect-octahedral sites. The main effect of the crystallization is the conversion from tetrahedral to defect-free octahedral sites. We discover that only the tetrahedral fraction in amorphous GeTe participates to the change of the FeGe-Te chemical bonds, with a net electronic charge density transfer of  ~ 1.6 e/a0 between FeGe and neighboring Te atoms. This charge transfer accounts for a lowering of the covalent character during crystallization. The results are corroborated by theoretical calculations within the framework of density functional theory. The observed atomic-scale chemical-structural changes are directly connected to the macroscopic phase transition and resistivity switch of GeTe thin films.R. MantovanR. FallicaA. Mokhles GeramiT. E. MølholtC. WiemerM. LongoH. P. GunnlaugssonK. JohnstonH. MasendaD. NaidooM. NcubeK. Bharuth-RamM. FanciulliH. P. GislasonG. LangoucheS. ÓlafssonG. WeyerNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-12 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
R. Mantovan
R. Fallica
A. Mokhles Gerami
T. E. Mølholt
C. Wiemer
M. Longo
H. P. Gunnlaugsson
K. Johnston
H. Masenda
D. Naidoo
M. Ncube
K. Bharuth-Ram
M. Fanciulli
H. P. Gislason
G. Langouche
S. Ólafsson
G. Weyer
Atomic-scale study of the amorphous-to-crystalline phase transition mechanism in GeTe thin films
description Abstract The underlying mechanism driving the structural amorphous-to-crystalline transition in Group VI chalcogenides is still a matter of debate even in the simplest GeTe system. We exploit the extreme sensitivity of 57Fe emission Mössbauer spectroscopy, following dilute implantation of 57Mn (T½ = 1.5 min) at ISOLDE/CERN, to study the electronic charge distribution in the immediate vicinity of the 57Fe probe substituting Ge (FeGe), and to interrogate the local environment of FeGe over the amorphous-crystalline phase transition in GeTe thin films. Our results show that the local structure of as-sputtered amorphous GeTe is a combination of tetrahedral and defect-octahedral sites. The main effect of the crystallization is the conversion from tetrahedral to defect-free octahedral sites. We discover that only the tetrahedral fraction in amorphous GeTe participates to the change of the FeGe-Te chemical bonds, with a net electronic charge density transfer of  ~ 1.6 e/a0 between FeGe and neighboring Te atoms. This charge transfer accounts for a lowering of the covalent character during crystallization. The results are corroborated by theoretical calculations within the framework of density functional theory. The observed atomic-scale chemical-structural changes are directly connected to the macroscopic phase transition and resistivity switch of GeTe thin films.
format article
author R. Mantovan
R. Fallica
A. Mokhles Gerami
T. E. Mølholt
C. Wiemer
M. Longo
H. P. Gunnlaugsson
K. Johnston
H. Masenda
D. Naidoo
M. Ncube
K. Bharuth-Ram
M. Fanciulli
H. P. Gislason
G. Langouche
S. Ólafsson
G. Weyer
author_facet R. Mantovan
R. Fallica
A. Mokhles Gerami
T. E. Mølholt
C. Wiemer
M. Longo
H. P. Gunnlaugsson
K. Johnston
H. Masenda
D. Naidoo
M. Ncube
K. Bharuth-Ram
M. Fanciulli
H. P. Gislason
G. Langouche
S. Ólafsson
G. Weyer
author_sort R. Mantovan
title Atomic-scale study of the amorphous-to-crystalline phase transition mechanism in GeTe thin films
title_short Atomic-scale study of the amorphous-to-crystalline phase transition mechanism in GeTe thin films
title_full Atomic-scale study of the amorphous-to-crystalline phase transition mechanism in GeTe thin films
title_fullStr Atomic-scale study of the amorphous-to-crystalline phase transition mechanism in GeTe thin films
title_full_unstemmed Atomic-scale study of the amorphous-to-crystalline phase transition mechanism in GeTe thin films
title_sort atomic-scale study of the amorphous-to-crystalline phase transition mechanism in gete thin films
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/8b8010c07dc04e4ba12f057b6f4b397d
work_keys_str_mv AT rmantovan atomicscalestudyoftheamorphoustocrystallinephasetransitionmechanismingetethinfilms
AT rfallica atomicscalestudyoftheamorphoustocrystallinephasetransitionmechanismingetethinfilms
AT amokhlesgerami atomicscalestudyoftheamorphoustocrystallinephasetransitionmechanismingetethinfilms
AT temølholt atomicscalestudyoftheamorphoustocrystallinephasetransitionmechanismingetethinfilms
AT cwiemer atomicscalestudyoftheamorphoustocrystallinephasetransitionmechanismingetethinfilms
AT mlongo atomicscalestudyoftheamorphoustocrystallinephasetransitionmechanismingetethinfilms
AT hpgunnlaugsson atomicscalestudyoftheamorphoustocrystallinephasetransitionmechanismingetethinfilms
AT kjohnston atomicscalestudyoftheamorphoustocrystallinephasetransitionmechanismingetethinfilms
AT hmasenda atomicscalestudyoftheamorphoustocrystallinephasetransitionmechanismingetethinfilms
AT dnaidoo atomicscalestudyoftheamorphoustocrystallinephasetransitionmechanismingetethinfilms
AT mncube atomicscalestudyoftheamorphoustocrystallinephasetransitionmechanismingetethinfilms
AT kbharuthram atomicscalestudyoftheamorphoustocrystallinephasetransitionmechanismingetethinfilms
AT mfanciulli atomicscalestudyoftheamorphoustocrystallinephasetransitionmechanismingetethinfilms
AT hpgislason atomicscalestudyoftheamorphoustocrystallinephasetransitionmechanismingetethinfilms
AT glangouche atomicscalestudyoftheamorphoustocrystallinephasetransitionmechanismingetethinfilms
AT solafsson atomicscalestudyoftheamorphoustocrystallinephasetransitionmechanismingetethinfilms
AT gweyer atomicscalestudyoftheamorphoustocrystallinephasetransitionmechanismingetethinfilms
_version_ 1718384913808359424