Backpropagation of Levenberg Marquardt artificial neural networks for wire coating analysis in the bath of Sisko fluid
In the artificial neural networks domain, the Levenberg-Marquardt technique is novel with convergent stability and generates a numerical solution of the wire coating system for Sisko fluid flow (WCS-SFF) through regression plots, histogram representations, state transition measures, and means square...
Enregistré dans:
Auteurs principaux: | Jawaher Lafi Aljohani, Eman Salem Alaidarous, Muhammad Asif Zahoor Raja, Muhammed Shabab Alhothuali, Muhammad Shoaib |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/8b832e40eac440a4adf09b8b919efaa6 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The atmospheric model of neural networks based on the improved Levenberg-Marquardt algorithm
par: Cui Wenhui, et autres
Publié: (2021) -
Numerical Investigations through ANNs for Solving COVID-19 Model
par: Muhammad Umar, et autres
Publié: (2021) -
Prediksi Harga Saham Menggunakan Metode Brown’s Weighted Exponential Moving Average dengan Optimasi Levenberg-Marquardt
par: Dini Indriyani Putri, et autres
Publié: (2021) -
Soft computing paradigm for Ferrofluid by exponentially stretched surface in the presence of magnetic dipole and heat transfer
par: Muhammad Shoaib, et autres
Publié: (2022) -
Intelligent computing through neural networks for numerical treatment of non-Newtonian wire coating analysis model
par: Jawaher Lafi Aljohani, et autres
Publié: (2021)