Potential antitumor activity of novel DODAC/PHO-S liposomes

Arthur Cássio de Lima Luna,1,2 Greice Kelle Viegas Saraiva,3 Otaviano Mendonça Ribeiro Filho,4 Gilberto Orivaldo Chierice,5 Salvador Claro Neto,5 Iolanda Midea Cuccovia,3 Durvanei Augusto Maria1,2 1Biochemistry and Biophysical Laboratory, Butantan Institute, 2Department of Med...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Luna ACL, Saraiva GKV, Filho OMR, Chierice GO, Neto SC, Cuccovia IM, Maria DA
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2016
Materias:
Acceso en línea:https://doaj.org/article/8b85249aca5a4712aba0e95f5937188d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8b85249aca5a4712aba0e95f5937188d
record_format dspace
spelling oai:doaj.org-article:8b85249aca5a4712aba0e95f5937188d2021-12-02T00:37:18ZPotential antitumor activity of novel DODAC/PHO-S liposomes1178-2013https://doaj.org/article/8b85249aca5a4712aba0e95f5937188d2016-04-01T00:00:00Zhttps://www.dovepress.com/potential-antitumor-activity-of-novel-dodacpho-s-liposomes-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Arthur Cássio de Lima Luna,1,2 Greice Kelle Viegas Saraiva,3 Otaviano Mendonça Ribeiro Filho,4 Gilberto Orivaldo Chierice,5 Salvador Claro Neto,5 Iolanda Midea Cuccovia,3 Durvanei Augusto Maria1,2 1Biochemistry and Biophysical Laboratory, Butantan Institute, 2Department of Medical Sciences, Medical School, 3Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, 4Environmental Health Surveillance, Municipality of Uberaba, Minas Gerais, 5Department of Chemistry and Molecular Physics, University of Sao Paulo, Sao Carlos, Brazil Abstract: In recent studies, we showed that synthetic phosphoethanolamine (PHO-S) has a great potential for inducing cell death in several tumor cell lines without damage to normal cells. However, its cytotoxic effect and selectivity against tumor cells could increase with encapsulation in cationic liposomes, such as dioctadecyldimethylammonium chloride (DODAC), due to electrostatic interactions between these liposomes and tumor cell membranes. Our aim was to use cationic liposomes to deliver PHO-S and to furthermore maximize the therapeutic effect of this compound. DODAC liposomes containing PHO-S (DODAC/PHO-S), at concentrations of 0.3–2.0 mM, prepared by ultrasonication, were analyzed by scanning electron microscopy (SEM) and dynamic light scattering. The cytotoxic effect of DODAC/PHO-S on B16F10 cells, Hepa1c1c7 cells, and human umbilical vein endothelial cells (HUVECs) was assessed by MTT assay. Cell cycle phases of B16F10 cells were analyzed by flow cytometry and the morphological changes by SEM, after treatment. The liposomes were spherical and polydisperse in solution. The liposomes were stable, presenting an average of ~50% of PHO-S encapsulation, with a small reduction after 40 days. DODAC demonstrated efficient PHO-S delivery, with the lowest values of IC50% (concentration that inhibits 50% of the growth of cells) for tumor cells, compared with PHO-S alone, with an IC50% value of 0.8 mM for B16F10 cells and 0.2 mM for Hepa1c1c7 cells, and without significant effects on endothelial cells. The Hepa1c1c7 cells showed greater sensitivity to the DODAC/PHO-S formulation when compared to B16F10 cells and HUVECs. The use of DODAC/PHO-S on B16F10 cells induced G2/M-phase cell cycle arrest, with the proportion significantly greater than that treated with PHO-S alone. The morphological analysis of B16F10 cells by SEM showed changes such as “bleb” formation, cell detachment, cytoplasmic retraction, and apoptotic bodies after DODAC/PHO-S treatment. Cationic liposomal formulation for PHO-S delivery promoted cytotoxicity more selectively and effectively against B16F10 and Hepa1c1c7 cells. Thus, the DODAC/PHO-S liposomal formulation presents great potential for preclinical studies.Keywords: hepatocellular carcinoma, lipossomal formulation, synthetic phosphoethanolamine, nanocarriers Luna ACLSaraiva GKVFilho OMRChierice GONeto SCCuccovia IMMaria DADove Medical PressarticleHepatocellular carcinomaliposomessynthetic phosphoethanolaminetumor cells.Medicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2016, Iss default, Pp 1577-1591 (2016)
institution DOAJ
collection DOAJ
language EN
topic Hepatocellular carcinoma
liposomes
synthetic phosphoethanolamine
tumor cells.
Medicine (General)
R5-920
spellingShingle Hepatocellular carcinoma
liposomes
synthetic phosphoethanolamine
tumor cells.
Medicine (General)
R5-920
Luna ACL
Saraiva GKV
Filho OMR
Chierice GO
Neto SC
Cuccovia IM
Maria DA
Potential antitumor activity of novel DODAC/PHO-S liposomes
description Arthur Cássio de Lima Luna,1,2 Greice Kelle Viegas Saraiva,3 Otaviano Mendonça Ribeiro Filho,4 Gilberto Orivaldo Chierice,5 Salvador Claro Neto,5 Iolanda Midea Cuccovia,3 Durvanei Augusto Maria1,2 1Biochemistry and Biophysical Laboratory, Butantan Institute, 2Department of Medical Sciences, Medical School, 3Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, 4Environmental Health Surveillance, Municipality of Uberaba, Minas Gerais, 5Department of Chemistry and Molecular Physics, University of Sao Paulo, Sao Carlos, Brazil Abstract: In recent studies, we showed that synthetic phosphoethanolamine (PHO-S) has a great potential for inducing cell death in several tumor cell lines without damage to normal cells. However, its cytotoxic effect and selectivity against tumor cells could increase with encapsulation in cationic liposomes, such as dioctadecyldimethylammonium chloride (DODAC), due to electrostatic interactions between these liposomes and tumor cell membranes. Our aim was to use cationic liposomes to deliver PHO-S and to furthermore maximize the therapeutic effect of this compound. DODAC liposomes containing PHO-S (DODAC/PHO-S), at concentrations of 0.3–2.0 mM, prepared by ultrasonication, were analyzed by scanning electron microscopy (SEM) and dynamic light scattering. The cytotoxic effect of DODAC/PHO-S on B16F10 cells, Hepa1c1c7 cells, and human umbilical vein endothelial cells (HUVECs) was assessed by MTT assay. Cell cycle phases of B16F10 cells were analyzed by flow cytometry and the morphological changes by SEM, after treatment. The liposomes were spherical and polydisperse in solution. The liposomes were stable, presenting an average of ~50% of PHO-S encapsulation, with a small reduction after 40 days. DODAC demonstrated efficient PHO-S delivery, with the lowest values of IC50% (concentration that inhibits 50% of the growth of cells) for tumor cells, compared with PHO-S alone, with an IC50% value of 0.8 mM for B16F10 cells and 0.2 mM for Hepa1c1c7 cells, and without significant effects on endothelial cells. The Hepa1c1c7 cells showed greater sensitivity to the DODAC/PHO-S formulation when compared to B16F10 cells and HUVECs. The use of DODAC/PHO-S on B16F10 cells induced G2/M-phase cell cycle arrest, with the proportion significantly greater than that treated with PHO-S alone. The morphological analysis of B16F10 cells by SEM showed changes such as “bleb” formation, cell detachment, cytoplasmic retraction, and apoptotic bodies after DODAC/PHO-S treatment. Cationic liposomal formulation for PHO-S delivery promoted cytotoxicity more selectively and effectively against B16F10 and Hepa1c1c7 cells. Thus, the DODAC/PHO-S liposomal formulation presents great potential for preclinical studies.Keywords: hepatocellular carcinoma, lipossomal formulation, synthetic phosphoethanolamine, nanocarriers 
format article
author Luna ACL
Saraiva GKV
Filho OMR
Chierice GO
Neto SC
Cuccovia IM
Maria DA
author_facet Luna ACL
Saraiva GKV
Filho OMR
Chierice GO
Neto SC
Cuccovia IM
Maria DA
author_sort Luna ACL
title Potential antitumor activity of novel DODAC/PHO-S liposomes
title_short Potential antitumor activity of novel DODAC/PHO-S liposomes
title_full Potential antitumor activity of novel DODAC/PHO-S liposomes
title_fullStr Potential antitumor activity of novel DODAC/PHO-S liposomes
title_full_unstemmed Potential antitumor activity of novel DODAC/PHO-S liposomes
title_sort potential antitumor activity of novel dodac/pho-s liposomes
publisher Dove Medical Press
publishDate 2016
url https://doaj.org/article/8b85249aca5a4712aba0e95f5937188d
work_keys_str_mv AT lunaacl potentialantitumoractivityofnoveldodacphosliposomes
AT saraivagkv potentialantitumoractivityofnoveldodacphosliposomes
AT filhoomr potentialantitumoractivityofnoveldodacphosliposomes
AT chiericego potentialantitumoractivityofnoveldodacphosliposomes
AT netosc potentialantitumoractivityofnoveldodacphosliposomes
AT cuccoviaim potentialantitumoractivityofnoveldodacphosliposomes
AT mariada potentialantitumoractivityofnoveldodacphosliposomes
_version_ 1718403630081507328