CT image sequence restoration based on sparse and low-rank decomposition.
Blurry organ boundaries and soft tissue structures present a major challenge in biomedical image restoration. In this paper, we propose a low-rank decomposition-based method for computed tomography (CT) image sequence restoration, where the CT image sequence is decomposed into a sparse component and...
Guardado en:
Autores principales: | Shuiping Gou, Yueyue Wang, Zhilong Wang, Yong Peng, Xiaopeng Zhang, Licheng Jiao, Jianshe Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8b86e9173a114ea6bb9130806e93b4c9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Low-Rank and Spectral-Spatial Sparse Unmixing for Hyperspectral Remote Sensing Imagery
por: Fan Li
Publicado: (2021) -
Graph-Based Logarithmic Low-Rank Tensor Decomposition for the Fusion of Remotely Sensed Images
por: Fei Ma, et al.
Publicado: (2021) -
Nonstationary signal extraction based on BatOMP sparse decomposition technique
por: Shuang-chao Ge, et al.
Publicado: (2021) -
Multivariate Nonlinear Sparse Mode Decomposition and Its Application in Gear Fault Diagnosis
por: Haiyang Pan, et al.
Publicado: (2021) -
Artifact Removal using Improved GoogLeNet for Sparse-view CT Reconstruction
por: Shipeng Xie, et al.
Publicado: (2018)