AI-based techniques for multi-step streamflow forecasts: application for multi-objective reservoir operation optimization and performance assessment
<p>Streamflow forecasts are traditionally effective in mitigating water scarcity and flood defense. This study developed an artificial intelligence (AI)-based management methodology that integrated multi-step streamflow forecasts and multi-objective reservoir operation optimization for water r...
Guardado en:
Autores principales: | Y. Guo, X. Yu, Y.-P. Xu, H. Chen, H. Gu, J. Xie |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Copernicus Publications
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8b8c0a51ad8d4d2d8c59a04acce796c3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Attributing correlation skill of dynamical GCM precipitation forecasts to statistical ENSO teleconnection using a set-theory-based approach
por: T. Zhao, et al.
Publicado: (2021) -
Intercomparing the robustness of machine learning models in simulation and forecasting of streamflow
por: Parthiban Loganathan, et al.
Publicado: (2021) -
Multi-model ensemble projection of mean and extreme streamflow of Brahmaputra River Basin under the impact of climate change
por: Sarfaraz Alam, et al.
Publicado: (2021) -
Application of multi-step approach for comprehensive identification of microplastic particles in diverse sediment samples
por: Olga Konechnaya, et al.
Publicado: (2021) -
Evaluating the capability of hybrid data-driven approaches to forecast monthly streamflow using hydrometric and meteorological variables
por: Fariba Azarpira, et al.
Publicado: (2021)