Digital nudging with recommender systems: Survey and future directions
Recommender systems are nowadays a pervasive part of our online user experience, where they either serve as information filters or provide us with suggestions for additionally relevant content. These systems thereby influence which information is easily accessible to us and thus affect our decision-...
Guardado en:
Autores principales: | Mathias Jesse, Dietmar Jannach |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8b8d206003a44e8a89173b8e78296fd9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Conversational recommendation based on end-to-end learning: How far are we?
por: Ahtsham Manzoor, et al.
Publicado: (2021) -
Who creates strong passwords when nudging fails
por: Shelia M. Kennison, et al.
Publicado: (2021) -
PrivItem2Vec: A privacy-preserving algorithm for top-N recommendation
por: Zhengqiang Ge, et al.
Publicado: (2021) -
Corrigendum to “Multimedia Archives: New Digital Filters to Correct Equalization Errors on Digitized Audio Tapes”
por: Niccolò Pretto, et al.
Publicado: (2021) -
D Modified KNN-LVQ for Stairs Down Detection Based on Digital Image
por: Ahmad Wali Satria Bahari Johan, et al.
Publicado: (2021)