Prognostic value of texture analysis from cardiac magnetic resonance imaging in patients with Takotsubo syndrome: a machine learning based proof-of-principle approach

Abstract Cardiac magnetic resonance (CMR) imaging has become an important technique for non-invasive diagnosis of takotsubo syndrome (TTS). The long-term prognostic value of CMR imaging in TTS has not been fully elucidated yet. This study sought to evaluate the prognostic value of texture analysis (...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Manoj Mannil, Ken Kato, Robert Manka, Jochen von Spiczak, Benjamin Peters, Victoria L. Cammann, Christoph Kaiser, Stefan Osswald, Thanh Ha Nguyen, John D. Horowitz, Hugo A. Katus, Frank Ruschitzka, Jelena R. Ghadri, Hatem Alkadhi, Christian Templin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8b9558fcbb414f078925eee1ae9987cc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8b9558fcbb414f078925eee1ae9987cc
record_format dspace
spelling oai:doaj.org-article:8b9558fcbb414f078925eee1ae9987cc2021-12-02T11:40:20ZPrognostic value of texture analysis from cardiac magnetic resonance imaging in patients with Takotsubo syndrome: a machine learning based proof-of-principle approach10.1038/s41598-020-76432-42045-2322https://doaj.org/article/8b9558fcbb414f078925eee1ae9987cc2020-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-76432-4https://doaj.org/toc/2045-2322Abstract Cardiac magnetic resonance (CMR) imaging has become an important technique for non-invasive diagnosis of takotsubo syndrome (TTS). The long-term prognostic value of CMR imaging in TTS has not been fully elucidated yet. This study sought to evaluate the prognostic value of texture analysis (TA) based on CMR images in patients with TTS using machine learning. In this multicenter study (InterTAK Registry), we investigated CMR imaging data of 58 patients (56 women, mean age 68 ± 12 years) with TTS. CMR imaging was performed in the acute to subacute phase (median time after symptom onset 4 days) of TTS. TA of the left ventricle was performed using free-hand regions-of-interest in short axis late gadolinium-enhanced and on T2-weighted (T2w) images. A total of 608 TA features adding the parameters age, gender, and body mass index were included. Dimension reduction was performed removing TA features with poor intra-class correlation coefficients (ICC ≤ 0.6) and those being redundant (correlation matrix with Pearson correlation coefficient r > 0.8). Five common machine-learning classifiers (artificial neural network Multilayer Perceptron, decision tree J48, NaïveBayes, RandomForest, and Sequential Minimal Optimization) with tenfold cross-validation were applied to assess 5-year outcome including major adverse cardiac and cerebrovascular events (MACCE). Dimension reduction yielded 10 TA features carrying prognostic information, which were all based on T2w images. The NaïveBayes machine learning classifier showed overall best performance with a sensitivity of 82.9% (confidence interval (CI) 80–86.2), specificity of 83.7% (CI 75.7–92), and an area-under-the receiver operating characteristics curve of 0.88 (CI 0.83–0.92). This proof-of-principle study is the first to identify unique T2w-derived TA features that predict long-term outcome in patients with TTS. These features might serve as imaging prognostic biomarkers in TTS patients.Manoj MannilKen KatoRobert MankaJochen von SpiczakBenjamin PetersVictoria L. CammannChristoph KaiserStefan OsswaldThanh Ha NguyenJohn D. HorowitzHugo A. KatusFrank RuschitzkaJelena R. GhadriHatem AlkadhiChristian TemplinNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-9 (2020)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Manoj Mannil
Ken Kato
Robert Manka
Jochen von Spiczak
Benjamin Peters
Victoria L. Cammann
Christoph Kaiser
Stefan Osswald
Thanh Ha Nguyen
John D. Horowitz
Hugo A. Katus
Frank Ruschitzka
Jelena R. Ghadri
Hatem Alkadhi
Christian Templin
Prognostic value of texture analysis from cardiac magnetic resonance imaging in patients with Takotsubo syndrome: a machine learning based proof-of-principle approach
description Abstract Cardiac magnetic resonance (CMR) imaging has become an important technique for non-invasive diagnosis of takotsubo syndrome (TTS). The long-term prognostic value of CMR imaging in TTS has not been fully elucidated yet. This study sought to evaluate the prognostic value of texture analysis (TA) based on CMR images in patients with TTS using machine learning. In this multicenter study (InterTAK Registry), we investigated CMR imaging data of 58 patients (56 women, mean age 68 ± 12 years) with TTS. CMR imaging was performed in the acute to subacute phase (median time after symptom onset 4 days) of TTS. TA of the left ventricle was performed using free-hand regions-of-interest in short axis late gadolinium-enhanced and on T2-weighted (T2w) images. A total of 608 TA features adding the parameters age, gender, and body mass index were included. Dimension reduction was performed removing TA features with poor intra-class correlation coefficients (ICC ≤ 0.6) and those being redundant (correlation matrix with Pearson correlation coefficient r > 0.8). Five common machine-learning classifiers (artificial neural network Multilayer Perceptron, decision tree J48, NaïveBayes, RandomForest, and Sequential Minimal Optimization) with tenfold cross-validation were applied to assess 5-year outcome including major adverse cardiac and cerebrovascular events (MACCE). Dimension reduction yielded 10 TA features carrying prognostic information, which were all based on T2w images. The NaïveBayes machine learning classifier showed overall best performance with a sensitivity of 82.9% (confidence interval (CI) 80–86.2), specificity of 83.7% (CI 75.7–92), and an area-under-the receiver operating characteristics curve of 0.88 (CI 0.83–0.92). This proof-of-principle study is the first to identify unique T2w-derived TA features that predict long-term outcome in patients with TTS. These features might serve as imaging prognostic biomarkers in TTS patients.
format article
author Manoj Mannil
Ken Kato
Robert Manka
Jochen von Spiczak
Benjamin Peters
Victoria L. Cammann
Christoph Kaiser
Stefan Osswald
Thanh Ha Nguyen
John D. Horowitz
Hugo A. Katus
Frank Ruschitzka
Jelena R. Ghadri
Hatem Alkadhi
Christian Templin
author_facet Manoj Mannil
Ken Kato
Robert Manka
Jochen von Spiczak
Benjamin Peters
Victoria L. Cammann
Christoph Kaiser
Stefan Osswald
Thanh Ha Nguyen
John D. Horowitz
Hugo A. Katus
Frank Ruschitzka
Jelena R. Ghadri
Hatem Alkadhi
Christian Templin
author_sort Manoj Mannil
title Prognostic value of texture analysis from cardiac magnetic resonance imaging in patients with Takotsubo syndrome: a machine learning based proof-of-principle approach
title_short Prognostic value of texture analysis from cardiac magnetic resonance imaging in patients with Takotsubo syndrome: a machine learning based proof-of-principle approach
title_full Prognostic value of texture analysis from cardiac magnetic resonance imaging in patients with Takotsubo syndrome: a machine learning based proof-of-principle approach
title_fullStr Prognostic value of texture analysis from cardiac magnetic resonance imaging in patients with Takotsubo syndrome: a machine learning based proof-of-principle approach
title_full_unstemmed Prognostic value of texture analysis from cardiac magnetic resonance imaging in patients with Takotsubo syndrome: a machine learning based proof-of-principle approach
title_sort prognostic value of texture analysis from cardiac magnetic resonance imaging in patients with takotsubo syndrome: a machine learning based proof-of-principle approach
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/8b9558fcbb414f078925eee1ae9987cc
work_keys_str_mv AT manojmannil prognosticvalueoftextureanalysisfromcardiacmagneticresonanceimaginginpatientswithtakotsubosyndromeamachinelearningbasedproofofprincipleapproach
AT kenkato prognosticvalueoftextureanalysisfromcardiacmagneticresonanceimaginginpatientswithtakotsubosyndromeamachinelearningbasedproofofprincipleapproach
AT robertmanka prognosticvalueoftextureanalysisfromcardiacmagneticresonanceimaginginpatientswithtakotsubosyndromeamachinelearningbasedproofofprincipleapproach
AT jochenvonspiczak prognosticvalueoftextureanalysisfromcardiacmagneticresonanceimaginginpatientswithtakotsubosyndromeamachinelearningbasedproofofprincipleapproach
AT benjaminpeters prognosticvalueoftextureanalysisfromcardiacmagneticresonanceimaginginpatientswithtakotsubosyndromeamachinelearningbasedproofofprincipleapproach
AT victorialcammann prognosticvalueoftextureanalysisfromcardiacmagneticresonanceimaginginpatientswithtakotsubosyndromeamachinelearningbasedproofofprincipleapproach
AT christophkaiser prognosticvalueoftextureanalysisfromcardiacmagneticresonanceimaginginpatientswithtakotsubosyndromeamachinelearningbasedproofofprincipleapproach
AT stefanosswald prognosticvalueoftextureanalysisfromcardiacmagneticresonanceimaginginpatientswithtakotsubosyndromeamachinelearningbasedproofofprincipleapproach
AT thanhhanguyen prognosticvalueoftextureanalysisfromcardiacmagneticresonanceimaginginpatientswithtakotsubosyndromeamachinelearningbasedproofofprincipleapproach
AT johndhorowitz prognosticvalueoftextureanalysisfromcardiacmagneticresonanceimaginginpatientswithtakotsubosyndromeamachinelearningbasedproofofprincipleapproach
AT hugoakatus prognosticvalueoftextureanalysisfromcardiacmagneticresonanceimaginginpatientswithtakotsubosyndromeamachinelearningbasedproofofprincipleapproach
AT frankruschitzka prognosticvalueoftextureanalysisfromcardiacmagneticresonanceimaginginpatientswithtakotsubosyndromeamachinelearningbasedproofofprincipleapproach
AT jelenarghadri prognosticvalueoftextureanalysisfromcardiacmagneticresonanceimaginginpatientswithtakotsubosyndromeamachinelearningbasedproofofprincipleapproach
AT hatemalkadhi prognosticvalueoftextureanalysisfromcardiacmagneticresonanceimaginginpatientswithtakotsubosyndromeamachinelearningbasedproofofprincipleapproach
AT christiantemplin prognosticvalueoftextureanalysisfromcardiacmagneticresonanceimaginginpatientswithtakotsubosyndromeamachinelearningbasedproofofprincipleapproach
_version_ 1718395657924902912