Metabolic engineering using iterative self-cloning to improve lipid productivity in Coccomyxa
Abstract We previously developed a self-cloning system that introduces cDNA of the uridine monophosphate synthase gene (cUMPS) of Coccomyxa sp. strain Obi as a selectable marker into uracil-auxotrophic mutants (Ura−) of the same alga. Here, we developed a Cre/loxP-based system for the removal of cUM...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8ba167cf36e2418999530200e8cb775f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract We previously developed a self-cloning system that introduces cDNA of the uridine monophosphate synthase gene (cUMPS) of Coccomyxa sp. strain Obi as a selectable marker into uracil-auxotrophic mutants (Ura−) of the same alga. Here, we developed a Cre/loxP-based system for the removal of cUMPS flanked by directly repeated loxP sites from the Coccomyxa genome using the intracellular delivery of purified Cre recombinase to generate an Ura− strain that was used as a host for second-round transformation using cUMPS as the selection marker. Employing this marker–gene-recycling system, Coccomyxa strains devoid of foreign DNA except the 34-bp loxP sequence, which overexpressed an acyl-(acyl-carrier-protein) thioesterase gene, and a type-2 diacylglycerol acyltransferase gene, were constructed by the sequential introduction of two expression cassettes for the respective genes. One of the resulting strains showed 1.4-fold higher lipid productivity than the wild-type strain. This method will be applicable to other eukaryotic microalgae to create marker-free transgenic strains. |
---|