Robust Explorative Particle Swarm Optimization for Optimal Design of EV Traction Motor
This paper proposes a robust optimization algorithm customized for the optimal design of electric machines. The proposed algorithm, termed “robust explorative particle swarm optimization” (RePSO), is a hybrid algorithm that affords high accuracy and a high search speed when determining robust optima...
Guardado en:
Autores principales: | Jin-Hwan Lee, Woo-Jung Kim, Sang-Yong Jung |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8bc09bd0b10f445f9372d2db099b3876 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Research on Optimal Torque Control of Turning Energy Consumption for EVs with Motorized Wheels
por: Wen Sun, et al.
Publicado: (2021) -
A Boosted Particle Swarm Method for Energy Efficiency Optimization of PRO Systems
por: Yingxue Chen, et al.
Publicado: (2021) -
Fuzzy Neural Networks Design Methods Based on Swarm Intelligent Optimization Algorithms and Its Application
por: Wang Yonghai,Guo Ke,Fang Yue,Ye Yuling
Publicado: (2021) -
Design of Fractional Particle Swarm Optimization Gravitational Search Algorithm for Optimal Reactive Power Dispatch Problems
por: Noor Habib Khan, et al.
Publicado: (2020) -
Multi-Objective Optimization of Microgrids Based on Recent Metaheuristic Methods
por: Tuba Tanyildizi Ağir*, et al.
Publicado: (2021)