Changing Mad2 levels affects chromosome segregation and spindle assembly checkpoint control in female mouse meiosis I.
The spindle assembly checkpoint (SAC) ensures correct separation of sister chromatids in somatic cells and provokes a cell cycle arrest in metaphase if one chromatid is not correctly attached to the bipolar spindle. Prolonged metaphase arrest due to overexpression of Mad2 has been shown to be delete...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2007
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8bd4d848e5924c1cad0b23413be343a5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8bd4d848e5924c1cad0b23413be343a5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8bd4d848e5924c1cad0b23413be343a52021-11-25T06:13:48ZChanging Mad2 levels affects chromosome segregation and spindle assembly checkpoint control in female mouse meiosis I.1932-620310.1371/journal.pone.0001165https://doaj.org/article/8bd4d848e5924c1cad0b23413be343a52007-11-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0001165https://doaj.org/toc/1932-6203The spindle assembly checkpoint (SAC) ensures correct separation of sister chromatids in somatic cells and provokes a cell cycle arrest in metaphase if one chromatid is not correctly attached to the bipolar spindle. Prolonged metaphase arrest due to overexpression of Mad2 has been shown to be deleterious to the ensuing anaphase, leading to the generation of aneuploidies and tumorigenesis. Additionally, some SAC components are essential for correct timing of prometaphase. In meiosis, we and others have shown previously that the Mad2-dependent SAC is functional during the first meiotic division in mouse oocytes. Expression of a dominant-negative form of Mad2 interferes with the SAC in metaphase I, and a knock-down approach using RNA interference accelerates anaphase onset in meiosis I. To prove unambigiously the importance of SAC control for mammalian female meiosis I we analyzed oocyte maturation in Mad2 heterozygote mice, and in oocytes overexpressing a GFP-tagged version of Mad2. In this study we show for the first time that loss of one Mad2 allele, as well as overexpression of Mad2 lead to chromosome missegregation events in meiosis I, and therefore the generation of aneuploid metaphase II oocytes. Furthermore, SAC control is impaired in mad2+/- oocytes, also leading to the generation of aneuploidies in meiosis I.Théodora NiaultKhaled HachedRocío SotilloPeter K SorgerBernard MaroRobert BenezraKatja WassmannPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 2, Iss 11, p e1165 (2007) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Théodora Niault Khaled Hached Rocío Sotillo Peter K Sorger Bernard Maro Robert Benezra Katja Wassmann Changing Mad2 levels affects chromosome segregation and spindle assembly checkpoint control in female mouse meiosis I. |
description |
The spindle assembly checkpoint (SAC) ensures correct separation of sister chromatids in somatic cells and provokes a cell cycle arrest in metaphase if one chromatid is not correctly attached to the bipolar spindle. Prolonged metaphase arrest due to overexpression of Mad2 has been shown to be deleterious to the ensuing anaphase, leading to the generation of aneuploidies and tumorigenesis. Additionally, some SAC components are essential for correct timing of prometaphase. In meiosis, we and others have shown previously that the Mad2-dependent SAC is functional during the first meiotic division in mouse oocytes. Expression of a dominant-negative form of Mad2 interferes with the SAC in metaphase I, and a knock-down approach using RNA interference accelerates anaphase onset in meiosis I. To prove unambigiously the importance of SAC control for mammalian female meiosis I we analyzed oocyte maturation in Mad2 heterozygote mice, and in oocytes overexpressing a GFP-tagged version of Mad2. In this study we show for the first time that loss of one Mad2 allele, as well as overexpression of Mad2 lead to chromosome missegregation events in meiosis I, and therefore the generation of aneuploid metaphase II oocytes. Furthermore, SAC control is impaired in mad2+/- oocytes, also leading to the generation of aneuploidies in meiosis I. |
format |
article |
author |
Théodora Niault Khaled Hached Rocío Sotillo Peter K Sorger Bernard Maro Robert Benezra Katja Wassmann |
author_facet |
Théodora Niault Khaled Hached Rocío Sotillo Peter K Sorger Bernard Maro Robert Benezra Katja Wassmann |
author_sort |
Théodora Niault |
title |
Changing Mad2 levels affects chromosome segregation and spindle assembly checkpoint control in female mouse meiosis I. |
title_short |
Changing Mad2 levels affects chromosome segregation and spindle assembly checkpoint control in female mouse meiosis I. |
title_full |
Changing Mad2 levels affects chromosome segregation and spindle assembly checkpoint control in female mouse meiosis I. |
title_fullStr |
Changing Mad2 levels affects chromosome segregation and spindle assembly checkpoint control in female mouse meiosis I. |
title_full_unstemmed |
Changing Mad2 levels affects chromosome segregation and spindle assembly checkpoint control in female mouse meiosis I. |
title_sort |
changing mad2 levels affects chromosome segregation and spindle assembly checkpoint control in female mouse meiosis i. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2007 |
url |
https://doaj.org/article/8bd4d848e5924c1cad0b23413be343a5 |
work_keys_str_mv |
AT theodoraniault changingmad2levelsaffectschromosomesegregationandspindleassemblycheckpointcontrolinfemalemousemeiosisi AT khaledhached changingmad2levelsaffectschromosomesegregationandspindleassemblycheckpointcontrolinfemalemousemeiosisi AT rociosotillo changingmad2levelsaffectschromosomesegregationandspindleassemblycheckpointcontrolinfemalemousemeiosisi AT peterksorger changingmad2levelsaffectschromosomesegregationandspindleassemblycheckpointcontrolinfemalemousemeiosisi AT bernardmaro changingmad2levelsaffectschromosomesegregationandspindleassemblycheckpointcontrolinfemalemousemeiosisi AT robertbenezra changingmad2levelsaffectschromosomesegregationandspindleassemblycheckpointcontrolinfemalemousemeiosisi AT katjawassmann changingmad2levelsaffectschromosomesegregationandspindleassemblycheckpointcontrolinfemalemousemeiosisi |
_version_ |
1718413995575083008 |