Deep-learning system to improve the quality and efficiency of volumetric heart segmentation for breast cancer
Abstract Although artificial intelligence algorithms are often developed and applied for narrow tasks, their implementation in other medical settings could help to improve patient care. Here we assess whether a deep-learning system for volumetric heart segmentation on computed tomography (CT) scans...
Guardado en:
Autores principales: | Roman Zeleznik, Jakob Weiss, Jana Taron, Christian Guthier, Danielle S. Bitterman, Cindy Hancox, Benjamin H. Kann, Daniel W. Kim, Rinaa S. Punglia, Jeremy Bredfeldt, Borek Foldyna, Parastou Eslami, Michael T. Lu, Udo Hoffmann, Raymond Mak, Hugo J. W. L. Aerts |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8becf93bb4f941d09c80914e23c4335a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep convolutional neural networks to predict cardiovascular risk from computed tomography
por: Roman Zeleznik, et al.
Publicado: (2021) -
Radiologists can visually predict mortality risk based on the gestalt of chest radiographs comparable to a deep learning network
por: Jakob Weiss, et al.
Publicado: (2021) -
Compressive Volumetric Light-Field Excitation
por: David C. Schedl, et al.
Publicado: (2017) -
ON THE VOLUMETRIC ENTROPY IN THE NON COMPACT CASE
por: NAVAS,ANDRÉS
Publicado: (2002) -
Estimation of Volumetric Mass Transfer Coefficient in Bioreactor
por: Zainab Yaquob Atiya
Publicado: (2012)