Longtime behavior of a semi-implicit scheme for Caginalp phase-field model

We present a semi-implicit scheme for the Caginalp phase-field model. The scheme is a combination of implicit Euler scheme together with Eyre’s decomposition. We prove the uniqueness of the numerical solution for small time-step and the unconditional stability of the scheme. We also show that the gl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mouhamadou Samsidy Goudiaby, Ben Mansour Dia
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/8bfeaead75514e1d885bbaca68286623
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8bfeaead75514e1d885bbaca68286623
record_format dspace
spelling oai:doaj.org-article:8bfeaead75514e1d885bbaca682866232021-11-10T04:40:27ZLongtime behavior of a semi-implicit scheme for Caginalp phase-field model2590-037410.1016/j.rinam.2021.100213https://doaj.org/article/8bfeaead75514e1d885bbaca682866232021-11-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2590037421000492https://doaj.org/toc/2590-0374We present a semi-implicit scheme for the Caginalp phase-field model. The scheme is a combination of implicit Euler scheme together with Eyre’s decomposition. We prove the uniqueness of the numerical solution for small time-step and the unconditional stability of the scheme. We also show that the global attractors generated by the scheme converges to the global attractor of the continuous problem as the time step goes to zero.Mouhamadou Samsidy GoudiabyBen Mansour DiaElsevierarticleSemi-implicit schemeLongtime stabilityDiscrete attractorTwo-phase flowMathematicsQA1-939ENResults in Applied Mathematics, Vol 12, Iss , Pp 100213- (2021)
institution DOAJ
collection DOAJ
language EN
topic Semi-implicit scheme
Longtime stability
Discrete attractor
Two-phase flow
Mathematics
QA1-939
spellingShingle Semi-implicit scheme
Longtime stability
Discrete attractor
Two-phase flow
Mathematics
QA1-939
Mouhamadou Samsidy Goudiaby
Ben Mansour Dia
Longtime behavior of a semi-implicit scheme for Caginalp phase-field model
description We present a semi-implicit scheme for the Caginalp phase-field model. The scheme is a combination of implicit Euler scheme together with Eyre’s decomposition. We prove the uniqueness of the numerical solution for small time-step and the unconditional stability of the scheme. We also show that the global attractors generated by the scheme converges to the global attractor of the continuous problem as the time step goes to zero.
format article
author Mouhamadou Samsidy Goudiaby
Ben Mansour Dia
author_facet Mouhamadou Samsidy Goudiaby
Ben Mansour Dia
author_sort Mouhamadou Samsidy Goudiaby
title Longtime behavior of a semi-implicit scheme for Caginalp phase-field model
title_short Longtime behavior of a semi-implicit scheme for Caginalp phase-field model
title_full Longtime behavior of a semi-implicit scheme for Caginalp phase-field model
title_fullStr Longtime behavior of a semi-implicit scheme for Caginalp phase-field model
title_full_unstemmed Longtime behavior of a semi-implicit scheme for Caginalp phase-field model
title_sort longtime behavior of a semi-implicit scheme for caginalp phase-field model
publisher Elsevier
publishDate 2021
url https://doaj.org/article/8bfeaead75514e1d885bbaca68286623
work_keys_str_mv AT mouhamadousamsidygoudiaby longtimebehaviorofasemiimplicitschemeforcaginalpphasefieldmodel
AT benmansourdia longtimebehaviorofasemiimplicitschemeforcaginalpphasefieldmodel
_version_ 1718440575869386752