Longtime behavior of a semi-implicit scheme for Caginalp phase-field model
We present a semi-implicit scheme for the Caginalp phase-field model. The scheme is a combination of implicit Euler scheme together with Eyre’s decomposition. We prove the uniqueness of the numerical solution for small time-step and the unconditional stability of the scheme. We also show that the gl...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8bfeaead75514e1d885bbaca68286623 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8bfeaead75514e1d885bbaca68286623 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8bfeaead75514e1d885bbaca682866232021-11-10T04:40:27ZLongtime behavior of a semi-implicit scheme for Caginalp phase-field model2590-037410.1016/j.rinam.2021.100213https://doaj.org/article/8bfeaead75514e1d885bbaca682866232021-11-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2590037421000492https://doaj.org/toc/2590-0374We present a semi-implicit scheme for the Caginalp phase-field model. The scheme is a combination of implicit Euler scheme together with Eyre’s decomposition. We prove the uniqueness of the numerical solution for small time-step and the unconditional stability of the scheme. We also show that the global attractors generated by the scheme converges to the global attractor of the continuous problem as the time step goes to zero.Mouhamadou Samsidy GoudiabyBen Mansour DiaElsevierarticleSemi-implicit schemeLongtime stabilityDiscrete attractorTwo-phase flowMathematicsQA1-939ENResults in Applied Mathematics, Vol 12, Iss , Pp 100213- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Semi-implicit scheme Longtime stability Discrete attractor Two-phase flow Mathematics QA1-939 |
spellingShingle |
Semi-implicit scheme Longtime stability Discrete attractor Two-phase flow Mathematics QA1-939 Mouhamadou Samsidy Goudiaby Ben Mansour Dia Longtime behavior of a semi-implicit scheme for Caginalp phase-field model |
description |
We present a semi-implicit scheme for the Caginalp phase-field model. The scheme is a combination of implicit Euler scheme together with Eyre’s decomposition. We prove the uniqueness of the numerical solution for small time-step and the unconditional stability of the scheme. We also show that the global attractors generated by the scheme converges to the global attractor of the continuous problem as the time step goes to zero. |
format |
article |
author |
Mouhamadou Samsidy Goudiaby Ben Mansour Dia |
author_facet |
Mouhamadou Samsidy Goudiaby Ben Mansour Dia |
author_sort |
Mouhamadou Samsidy Goudiaby |
title |
Longtime behavior of a semi-implicit scheme for Caginalp phase-field model |
title_short |
Longtime behavior of a semi-implicit scheme for Caginalp phase-field model |
title_full |
Longtime behavior of a semi-implicit scheme for Caginalp phase-field model |
title_fullStr |
Longtime behavior of a semi-implicit scheme for Caginalp phase-field model |
title_full_unstemmed |
Longtime behavior of a semi-implicit scheme for Caginalp phase-field model |
title_sort |
longtime behavior of a semi-implicit scheme for caginalp phase-field model |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/8bfeaead75514e1d885bbaca68286623 |
work_keys_str_mv |
AT mouhamadousamsidygoudiaby longtimebehaviorofasemiimplicitschemeforcaginalpphasefieldmodel AT benmansourdia longtimebehaviorofasemiimplicitschemeforcaginalpphasefieldmodel |
_version_ |
1718440575869386752 |