Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders.

Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful informati...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Matthew R Whiteway, Dan Biderman, Yoni Friedman, Mario Dipoppa, E Kelly Buchanan, Anqi Wu, John Zhou, Niccolò Bonacchi, Nathaniel J Miska, Jean-Paul Noel, Erica Rodriguez, Michael Schartner, Karolina Socha, Anne E Urai, C Daniel Salzman, International Brain Laboratory, John P Cunningham, Liam Paninski
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
Acceso en línea:https://doaj.org/article/8c044a2fffaa489890ca5e3b6a6b6664
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8c044a2fffaa489890ca5e3b6a6b6664
record_format dspace
spelling oai:doaj.org-article:8c044a2fffaa489890ca5e3b6a6b66642021-12-02T19:57:44ZPartitioning variability in animal behavioral videos using semi-supervised variational autoencoders.1553-734X1553-735810.1371/journal.pcbi.1009439https://doaj.org/article/8c044a2fffaa489890ca5e3b6a6b66642021-09-01T00:00:00Zhttps://doi.org/10.1371/journal.pcbi.1009439https://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful information from video data. Here we introduce a new video analysis tool that combines the output of supervised pose estimation algorithms (e.g. DeepLabCut) with unsupervised dimensionality reduction methods to produce interpretable, low-dimensional representations of behavioral videos that extract more information than pose estimates alone. We demonstrate this tool by extracting interpretable behavioral features from videos of three different head-fixed mouse preparations, as well as a freely moving mouse in an open field arena, and show how these interpretable features can facilitate downstream behavioral and neural analyses. We also show how the behavioral features produced by our model improve the precision and interpretation of these downstream analyses compared to using the outputs of either fully supervised or fully unsupervised methods alone.Matthew R WhitewayDan BidermanYoni FriedmanMario DipoppaE Kelly BuchananAnqi WuJohn ZhouNiccolò BonacchiNathaniel J MiskaJean-Paul NoelErica RodriguezMichael SchartnerKarolina SochaAnne E UraiC Daniel SalzmanInternational Brain LaboratoryJohn P CunninghamLiam PaninskiPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 17, Iss 9, p e1009439 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Matthew R Whiteway
Dan Biderman
Yoni Friedman
Mario Dipoppa
E Kelly Buchanan
Anqi Wu
John Zhou
Niccolò Bonacchi
Nathaniel J Miska
Jean-Paul Noel
Erica Rodriguez
Michael Schartner
Karolina Socha
Anne E Urai
C Daniel Salzman
International Brain Laboratory
John P Cunningham
Liam Paninski
Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders.
description Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful information from video data. Here we introduce a new video analysis tool that combines the output of supervised pose estimation algorithms (e.g. DeepLabCut) with unsupervised dimensionality reduction methods to produce interpretable, low-dimensional representations of behavioral videos that extract more information than pose estimates alone. We demonstrate this tool by extracting interpretable behavioral features from videos of three different head-fixed mouse preparations, as well as a freely moving mouse in an open field arena, and show how these interpretable features can facilitate downstream behavioral and neural analyses. We also show how the behavioral features produced by our model improve the precision and interpretation of these downstream analyses compared to using the outputs of either fully supervised or fully unsupervised methods alone.
format article
author Matthew R Whiteway
Dan Biderman
Yoni Friedman
Mario Dipoppa
E Kelly Buchanan
Anqi Wu
John Zhou
Niccolò Bonacchi
Nathaniel J Miska
Jean-Paul Noel
Erica Rodriguez
Michael Schartner
Karolina Socha
Anne E Urai
C Daniel Salzman
International Brain Laboratory
John P Cunningham
Liam Paninski
author_facet Matthew R Whiteway
Dan Biderman
Yoni Friedman
Mario Dipoppa
E Kelly Buchanan
Anqi Wu
John Zhou
Niccolò Bonacchi
Nathaniel J Miska
Jean-Paul Noel
Erica Rodriguez
Michael Schartner
Karolina Socha
Anne E Urai
C Daniel Salzman
International Brain Laboratory
John P Cunningham
Liam Paninski
author_sort Matthew R Whiteway
title Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders.
title_short Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders.
title_full Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders.
title_fullStr Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders.
title_full_unstemmed Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders.
title_sort partitioning variability in animal behavioral videos using semi-supervised variational autoencoders.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/8c044a2fffaa489890ca5e3b6a6b6664
work_keys_str_mv AT matthewrwhiteway partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT danbiderman partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT yonifriedman partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT mariodipoppa partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT ekellybuchanan partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT anqiwu partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT johnzhou partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT niccolobonacchi partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT nathanieljmiska partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT jeanpaulnoel partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT ericarodriguez partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT michaelschartner partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT karolinasocha partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT anneeurai partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT cdanielsalzman partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT internationalbrainlaboratory partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT johnpcunningham partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT liampaninski partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
_version_ 1718375789350617088