Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders.
Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful informati...
Guardado en:
Autores principales: | Matthew R Whiteway, Dan Biderman, Yoni Friedman, Mario Dipoppa, E Kelly Buchanan, Anqi Wu, John Zhou, Niccolò Bonacchi, Nathaniel J Miska, Jean-Paul Noel, Erica Rodriguez, Michael Schartner, Karolina Socha, Anne E Urai, C Daniel Salzman, International Brain Laboratory, John P Cunningham, Liam Paninski |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8c044a2fffaa489890ca5e3b6a6b6664 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Explore Protein Conformational Space With Variational Autoencoder
por: Hao Tian, et al.
Publicado: (2021) -
Conditional Variational Autoencoder for Learned Image Reconstruction
por: Chen Zhang, et al.
Publicado: (2021) -
Adversarial Attention-Based Variational Graph Autoencoder
por: Ziqiang Weng, et al.
Publicado: (2020) -
Optimizing Few-Shot Learning Based on Variational Autoencoders
por: Ruoqi Wei, et al.
Publicado: (2021) -
Incremental autoencoders for text streams clustering in social networks
por: Amal Rekik, et al.
Publicado: (2021)