Characterisation of Temporal Patterns in Step Count Behaviour from Smartphone App Data: An Unsupervised Machine Learning Approach
The increasing ubiquity of smartphone data, with greater spatial and temporal coverage than achieved by traditional study designs, have the potential to provide insight into habitual physical activity patterns. This study implements and evaluates the utility of both K-means clustering and agglomerat...
Guardado en:
Autores principales: | Francesca Pontin, Nik Lomax, Graham Clarke, Michelle A. Morris |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8c123dc6713846f096840954df911a49 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Selecting a Stored Data Approach for Mobile Apps
por: Nickerson,Robert C, et al.
Publicado: (2016) -
Editorial: Unsupervised Learning Models for Unlabeled Genomic, Transcriptomic & Proteomic Data
por: Jianing Xi, et al.
Publicado: (2021) -
An Empirical Comparison of EM and K-means Algorithms for Binning Metagenomics Datasets
por: Tapia Reyes,Patricio, et al.
Publicado: (2018) -
Towards Using Unsupervised Learning for Comparing Traditional and Synchronous Online Learning in Assessing Students’ Academic Performance
por: Mariana-Ioana Maier, et al.
Publicado: (2021) -
Smartphone Ophthalmoscopy: is there a place for it?
por: Pujari A
Publicado: (2021)