A time-dependent parameter estimation framework for crop modeling
Abstract The performance of crop models in simulating various aspects of the cropping system is sensitive to parameter calibration. Parameter estimation is challenging, especially for time-dependent parameters such as cultivar parameters with 2–3 years of lifespan. Manual calibration of the paramete...
Guardado en:
Autores principales: | Faezeh Akhavizadegan, Javad Ansarifar, Lizhi Wang, Isaiah Huber, Sotirios V. Archontoulis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8c3be05b37e54653af416d31c2667d44 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An interaction regression model for crop yield prediction
por: Javad Ansarifar, et al.
Publicado: (2021) -
Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt
por: Mohsen Shahhosseini, et al.
Publicado: (2021) -
Consistent negative response of US crops to high temperatures in observations and crop models
por: Bernhard Schauberger, et al.
Publicado: (2017) -
Joint Estimation for DOA and Polarization Parameters in Sparse Bayesian Framework
por: Xu Haifeng
Publicado: (2021) -
Estimating Crop Biophysical Parameters Using Machine Learning Algorithms and Sentinel-2 Imagery
por: Mahlatse Kganyago, et al.
Publicado: (2021)